

I N S I D E M A C O S X

Kernel Environment

December 2000

Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleTalk,
Mac, Macintosh, and QuickTime are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Carbon, Cocoa, and Quartz are
trademarks of Apple Computer, Inc.

NeXT and OpenStep are trademarks
of NeXT Software, Inc., registered in
the United States and other countries.
OpenGL is a registered trademark of
Silicon Graphics, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company, Ltd.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Contents

Chapter 1

About This Book

7

Audience Profile 7
Road Map 9
Other Apple Publications 10
Information on the Web 10

Chapter 2

Kernel Architecture

13

Darwin 15
Architecture 16

Mach 18
BSD 18
I/O Kit 19

Networking 19
File Systems 20

Kernel Extensions 20

Chapter 3

Mach

21

Mach Kernel Abstractions 22
Tasks and Threads 23
Ports, Port Rights, Port Sets, and Port Name Spaces 25
Memory Management 26
Task to Task Communication (IPC) 28

IPC Transactions and Event Dispatching 29
Message Queues 29
Semaphores 30
Notifications 30
Locks 30
Remote Procedure Calls (RPCs) 30

Time Management 31

4

C O N T E N T S

Chapter 4

BSD

33

BSD Facilities 34
Differences between Mac OS X and BSD 36
For Further Reading 37

Chapter 5

Device Drivers and the I/O Kit

39

Redesigning the I/O Model 40
I/O Kit Architecture 41

Families 42
Drivers 43
Nubs 43
Connection Example 44

Accessing Kernel APIs from User Space 45
User Client Access 45
BSD Media Shim 47

Chapter 6

Networking and Network Kernel Extensions

49

Review of 4.4BSD Network Architecture 50
NKE Types 51
Modifications to 4.4BSD Networking Architecture 53

Chapter 7

File Systems and VFS Stacks

55

Working With the File System 56
A Politically Correct Example 58

Chapter 8

Extending the Kernel

59

KEXT Implementation 61
KMOD Dependencies 61
Building and Testing Your KEXT 62

C O N T E N T S

5

Debugging Your KEXT 63
Installed KEXTs 64

Chapter 9

Kernel Services

67

Available Services 68
BSD Media Shim 68
Device Driver Management 69
Events 69
Exceptions, Traps 69
Families 69
File Descriptor Management 70
Host Manipulation and Inquiry 70
Interprocess Communication (IPC) 70
Kernel Loadable Module Support 70
Kernel Tracing 71
Lock Management 71
Mach Interface Generator (MIG) 71
mbuf Management 72
Memory and Address Space Management 72
Port Right Management 72
Processor Management 73
Registry 73
Queue Management 73
Socket Management 73
Network Kernel Extension Support 74
Scheduling 74
Synchronization Primitives (Low Level) 74
Synchronization Primitives 74
sysctl 75
Task and Thread Management 75
Timing Services 75
VFS Infrastructure 75
Vnode Management 76
Zone allocator 76

6

C O N T E N T S

Glossary

77

Bibliography

89

Index

97

Audience Profile

7

C H A P T E R 1

1 About This Book

The purpose of this book is to provide fundamental high-level information about
the Mac OS X core operating-system architecture. It also provides background for
system programmers and developers of device drivers, file systems, and network
extensions. The book concentrates on those areas where Mac OS X system
architecture differs from other, similar operating systems.

Therefore, this book does not delve deeply into the specific

APIs

 or programmatic
use of the individual components of the Mac OS X core operating system,
collectively known as the

kernel

. These components include

Mach

,

BSD

, the

I/O
Kit

, networking, and the file system. To learn more about how to program for these
components, you should see the specific documentation for each of them.

Audience Profile

This book has a wide and diverse audience—specifically, the set of potential system
software developers for Mac OS X, including the following sorts of developers:

�

Device-driver writers.

 Device-driver writers make up the largest portion of the
audience. You will be some of the first developers to start writing code for Mac
OS X. Most device-driver writers will have come from one of the following
platform backgrounds:

�

Generic device drivers (third-party solutions).

Your company writes
drivers for many operating systems—Mac OS, Microsoft Windows, Linux,
and so forth. You’d like to know how writing for Mac OS X will be different
(and how it will be similar).

8

Audience Profile

C H A P T E R 1

About This Book

�

UNIX platforms and variants of UNIX platforms such as FreeBSD, Linux,
Solaris, and others.

You’ve been writing drivers for platforms such as Linux
and FreeBSD. You want to know how to modify your code (or change your
habits) when writing for Mac OS X. You may have certain preconceived
notions about writing device drivers. The kernel environment model in Mac
OS X differs in several respects from what you are used to; you’ll need to
understand those differences.

�

Windows NT.

You have been writing for the Windows NT platform. Now,
you have decided to broaden your scope. You need to know how to write for
Mac OS X.

�

Mac OS (Classic).

You have been writing drivers for Mac OS for a long time
and you know everything there is to know about Mac OS 8 and 9. However,
Mac OS X is different. You need to know how to modify your code (or change
your habits) when porting to Mac OS X.

�

Network-extension writers.

You need to know how the networking subsystem
fits in with the rest of the core operating system. You come from a platform
background similar to the device-driver writers.

�

File-system writers.

You want to support a file system such as AFS or NTFS. You
need to understand how to fit your code into Mac OS X.

�

Developers of software requiring very low-level access to file-system data.

You are writing software that needs low-level access to the file system,
applications such as on-the-fly compression, encryption, and virus checking.
You need to understand how to write Virtual File System stacks to add value on
top of Mac OS X.

�

System programmers familiar with BSD, Linux, and similar operating
systems.

As a system programmer, you’re wondering what Mac OS X has to
offer you. This book addresses the differences between Mac OS X and the
“standard” BSD and Mach 3.0 implementations.

�

Customers with special requirements.

Because the Mac OS X kernel technology
is

Open Source

, some developers will be planning to make changes to the
underlying operating system in order to meet special requirements at their sites
(or example, a university customer may wish to add

Kerberos

 support). This
book tells you how the parts of the Mac OS X kernel fit together and interact.

�

Applications developers, students and others.

 You’re not a system
programmer, but you’re interested in how Mac OS X is put together. You may
already be familiar with BSD, Linux, or other UNIX variants and possibly

C H A P T E R 1

About This Book

Road Map

9

Windows NT as well. Although you don’t expect to need to know a great deal
about the kernel environment, you are nonetheless interested in some details of
memory allocation, process management, and the like.

Road Map

The goal of this book is to describe the underlying global concepts of the core
operating-system development environment. That is, it describes shared concepts
that are not specific to any one of the primary subsystems: Mach, the I/O Kit, BSD,
file systems, or networking. All concepts should be applicable to each of these
subsystems and are therefore useful to developers from any background (such as
device-driver writers).

This book does not delve deeply into the specific APIs or programmatic use of the
individual subsystems of the operating system. Each of these subsystems will be the
subject of its own documentation.

The chapters of this book describe the kernel environment from different angles.
Discussion of specific APIs, however, is left to more in-depth component-specific
documentation.

The next chapter provides an overview of the Mac OS X kernel architecture. There
follow several chapters that discuss each of the architectural components of Mac OS
X in more detail, one chapter per component. These are followed in turn by a
chapter that discusses extending the kernel, from a conceptual viewpoint.

The last chapter covers available kernel services. For each service, it provides a brief
description as well as listing which components are either a provider or a client. The
book ends with a glossary of terms used throughout the preceding chapters as well
as a comprehensive reference bibliography.

The glossary covers many of the terms used throughout the earlier chapters of this
book; these terms are highlighted in bold when first used. Rather than stop and
define each term as it appears, the definitions are all in the glossary. If a term seems
familiar, it probably means what you think it does. If it’s unfamiliar, check the
glossary. In any case, all readers may want to skim through the glossary, in case
there are subtle differences between Mac OS X usage and that of other operating
systems.

10

Other Apple Publications

C H A P T E R 1

About This Book

The bibliography provides numerous pointers to other reference materials. The goal
of this book is very broad, providing a firm grounding in the fundamentals of Mac
OS X kernel programming for developers from many backgrounds. Unfortunately,
to do a complete and comprehensive job would fill an entire library, rather than one
book. Instead, this book includes references to additional publications already in
existence. Some of these are Apple publications; others are external documents. To
make things easier, the bibliographic references are grouped into categories.

By the time you have finished this book, you should have a basic understanding of
Mac OS X system internals and how to begin programming Mac OS X system
software. You should also have a good idea of what you’ll need to read next.

Other Apple Publications

This book,

Kernel Environment

, is part of a planned series, Inside Mac OS X. Be sure
to read the first book in the series,

System Overview

, if you are not familiar with
Mac OS X.

You can obtain other books in the Inside Mac OS X series (as they become available)
using publish-on-demand. . To obtain a printed copy of an Inside Mac OS X book,
go to the Fatbrain.com website at www.fatbrain.com.

Information on the Web

Apple maintains several websites where developers can go for general and
technical information on Mac OS X.

�

Apple Developer Connection: Developer Documentation
(

developer.apple.com/techpubs

) . Features the same documentation that is
installed on Mac OS X, except that often the documentation is more up-to-date.
Also includes legacy documentation.

C H A P T E R 1

About This Book

Information on the Web

11

�

Apple Developer Connection: Mac OS X (

developer.apple.com/macosx

) . Offers
SDKs, release notes, product notes and news, and other resources and
information related to Mac OS X.

�

AppleCare Tech Info Library (

til.info.apple.com

) . Contains technical articles,
tutorials, FAQs, technical notes, and other information.

13

C H A P T E R 2

2 Kernel Architecture

Mac OS X provides many benefits to the Macintosh user and developer
communities. These benefits include improved reliability and performance,
enhanced networking features, an object-based system programming interface, and
increased support for industry standards.

In creating Mac OS X, Apple has completely re-engineered the Mac OS core
operating system. Forming the foundation of Mac OS X is the kernel. Figure 2-1
illustrates the Mac OS X architecture.

Figure 2-1

Mac OS X architecture

The kernel provides many enhancements for Mac OS X. These include

preemption

,

memory protection

, enhanced performance, improved networking facilities,
support for both Macintosh (Extended and Standard) and non-Macintosh (UFS, ISO
9660) file systems, object-oriented APIs, and more. Two of these features,
preemption and memory protection, lead to a more robust environment.

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

14

C H A P T E R 2

Kernel Architecture

In Mac OS 8 and 9, applications cooperate to share processor time. Similarly, all
applications share the memory of the computer among them. Mac OS 8 and 9 are

cooperative multitasking

 environments. The responsiveness of all processes is
compromised if even a single application doesn’t cooperate. On the other hand,
real-time applications such as multimedia need to be assured of predictable,
time-critical, behavior.

In contrast, Mac OS X is a

preemptive multitasking

 environment. In Mac OS X, the
kernel provides enforcement of cooperation, scheduling processes to share time
(preemption). This supports real-time behavior in applications that require it.

In Mac OS X, processes do not normally share memory. Instead, the kernel assigns
each

process

 its own

address space

, controlling access to these address spaces. This
control ensures that no application can inadvertently access or modify another
application’s memory (protection). Size is not an issue; with the virtual memory
system included in Mac OS X, each application has access to its own 4 GB memory
address space.

Viewed together, all applications are said to run in user space, but this does not
imply that they share memory. User space is simply a term for the combined
address spaces of all user-level applications. The kernel itself has its own address
space, called kernel space. In Mac OS X, no application can modify the memory of
the system software (the kernel).

Although user processes do not share memory by default as in Mac OS 8 and 9,
communication (and even memory sharing) between applications is still possible.
For example, the kernel offers a rich set of primitives to permit some sharing of
information among processes. These primitives include shared libraries and
frameworks. Mach messaging provides another approach, handing memory from
one process to another. Unlike Mac OS 8 and 9, however, memory sharing cannot
occur without explicit action by the programmer.

C H A P T E R 2

Kernel Architecture

Darwin

15

Darwin

The Mac OS X kernel is a key part of Apple’s

Open Source

 initiative. The Mac OS X
kernel is also the core of an operating system product called

Darwin

. Darwin is a
complete operating system based on many of the same technologies that underlie
Mac OS X. However, Darwin does not include Apple’s proprietary graphics or
applications layers, such as Quartz, QuickTime, or OpenGL.

Figure 2-2 shows the relationship between Darwin and Mac OS X. Both build upon
the same kernel, but Mac OS X adds Core Services, Application Services and
QuickTime, as well as the

Classic

,

Carbon

,

Cocoa

, and Java (JDK) application
environments. Both Darwin and Mac OS X include the BSD command-line
application environment; however, in Mac OS X, this environment is usually
hidden.

Figure 2-2

Darwin and Mac OS X

Darwin technology is based on

BSD

, Mach 3.0, and Apple technologies. Best of all,
Darwin technology is Open Source technology, which means that developers have
full access to the source code. In effect, Mac OS X third-party developers can be part
of the Darwin core system software development team. Developers can also see

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

16

Architecture

C H A P T E R 2

Kernel Architecture

how Apple is doing things in the core operating system and adopt (or adapt) code
to use within their own products. Refer to the

Apple Public Source License

 for
details.

Because the same system software forms the core of both Mac OS X and Darwin,
system software developers can write software that runs on both Mac OS X and
Darwin with few, if any, required changes. The only difference might be in the way
the software interacts with the application environment.

The Mac OS X core operating system is based on proven technology from many
sources. A large portion of this technology is derived from FreeBSD, a version of
4.4BSD that offers advanced networking, performance, security, and compatibility
features. Other parts of the system software, such as Mach, are based on technology
previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology
acquired from NeXT. Much of the code is platform-independent. All of the core
operating-system code is available in source form.

The core technologies have been chosen for several reasons. Mach provides a clean
set of abstractions for dealing with memory management, interprocess (and
interprocessor) communication, and other low-level operating-system functions. In
today’s rapidly changing hardware environment, this provides a useful layer of
insulation between the operating system and the underlying hardware.

BSD is a carefully engineered, mature operating system with many capabilities. In
fact, most of today’s commercial Linux, UNIX, and other similar operating systems
contain a great deal of BSD code. BSD also provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKEs),
have been designed and engineered by Apple to take advantage of advanced
capabilities, such as those provided by an object-oriented programming model. Mac
OS X combines these new technologies with time-tested industry standards to
create an operating system that is stable, reliable, flexible, and extensible.

Architecture

The foundation layer of Darwin and Mac OS X is composed of several architectural
components, as shown in Figure 2-3. Taken together, these components form the

kernel environment

 or simply, the kernel.

C H A P T E R 2

Kernel Architecture

Architecture

17

Figure 2-3

Mac OS X kernel architecture

Important

Note that Mac OS X uses the term

kernel

 somewhat
differently than you may be used to seeing it used.

A kernel, in traditional operating-system terminology, is a small nucleus of
software that provides only the minimal facilities necessary for implementing
additional operating-system services. — from

The Design and Implementation of the
4.4 BSD Operating System

, McKusick, Bostic, Karels, and Quarterman, 1996

Instead, Mac OS X uses the term kernel to refer to everything that executes in the
kernel address space.

The Mac OS X kernel includes Mach, BSD, the I/O Kit, file systems, and networking
components. Each of these components is described briefly in the following
sections. For further details, refer to the specific component chapters or to the
reference material listed in the Bibliography.

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit

18

Architecture

C H A P T E R 2

Kernel Architecture

Mach

Mach manages processor resources such as CPU usage and memory, handles
scheduling, provides memory protection, and provides a messaging-centered
infrastructure to the rest of the operating-system layers. The Mach component
provides

�

untyped

IPC

 and

RPC

�

support for

SMP

�

support for

real-time

 services

�

an

external pager

�

modular architecture

�

improved performance

BSD

Above the Mach layer, the BSD layer provides “OS personality” APIs and services.
The BSD layer is based on the BSD kernel, primarily

FreeBSD

 . The BSD component
provides

�

file systems

�

networking

�

basic security policies such as user IDs and permissions

�

the system framework – a mechanism for exporting APIs to the application
layers

�

the BSD process model, including process IDs and signals

�

FreeBSD kernel APIs

�

many of the

POSIX

 APIs

�

Pthreads

 (POSIX threads implementation)

C H A P T E R 2

Kernel Architecture

Architecture

19

I/O Kit

The I/O Kit provides a framework for simplified driver development, supporting
many categories of devices.The I/O Kit features an object-oriented I/O architecture
implemented in a restricted subset of C++. The I/O Kit framework is both modular
and extensible. The I/O Kit component provides

�

true plug and play

�

dynamic device management

�

dynamic (“on-demand”) loading of drivers

�

power management for desktop systems as well as portables

�

multiprocessor capabilities

Networking

Mac OS X networking takes advantage of BSD’s advanced networking capabilities
to provide support for modern features, such as Network Address Translation
(

NAT

) and

firewalls

. The networking component provides

�

4.4BSD TCP/IP stack and socket APIs

�

support for both IP and AppleTalk

�

multihoming

�

routing

�

multicast

 support

�

server tuning

�

socket-based AppleTalk

�

Mac OS Classic support

� Carbonized Open Transport APIs

20 Kernel Extensions

C H A P T E R 2

Kernel Architecture

File Systems
Mac OS X provides support for numerous types of file systems, including HFS,
HFS+, UFS, NFS, ISO 9660, and others. The default file-system type is HFS+; Mac
OS X boots (and “roots”) from HFS+. Advanced features of Mac OS X file systems
include an enhanced Virtual File System (VFS) design. VFS provides for a layered
architecture (file systems are stackable). The file system component provides

� UTF-8 (Unicode) support

� increased performance

Kernel Extensions

Mac OS X provides a kernel extension mechanism as a means of allowing dynamic
loading of pieces of code into the kernel, without the need to recompile. These
pieces of code are known generically as plug-ins or, in the Mac OS X kernel, as
kernel extensions or KEXTs.

Because KEXTs provide both modularity and dynamic loadability, they are a
natural choice for any relatively self-contained service that requires access to kernel
internal interfaces. Many of the components of the kernel environment support this
extension mechanism, although in different ways.

For example, some of the new networking features involve the use of network
kernel extensions (NKEs). The ability to dynamically add a new file-system
implementation is based on VFS KEXTs. Device drivers and device families in the
I/O Kit are implemented using KEXTs. KEXTs make development much easier for
developers writing drivers or those writing code to support a new volume format
or networking protocol. KEXTs are discussed in more detail in the chapter
“Extending the Kernel” (page 59).

21

C H A P T E R 3

3 Mach

The fundamental services and primitives of the Mac OS X kernel are based on Mach
3.0. Apple has modified and extended Mach to better meet Mac OS X functional and
performance goals.

Mach 3.0 was originally conceived as a simple, extensible, communications
microkernel. It is capable of running as a standalone kernel, with other traditional
operating-system services such as I/O, file systems, and networking stacks running
as user-mode servers.

However, in Mac OS X, Mach is linked with other kernel components into a single
kernel address space. This is primarily for performance; it is much faster to make a
direct call between linked components than it is to send messages or do RPCs
between separate tasks. This modular structure results in a more robust and
extensible system than a monolithic kernel would allow, without the performance
penalty of a pure microkernel.

Thus in Mac OS X, Mach is not primarily a communication hub between clients and
servers. Instead, its value consists of its abstractions, its extensibility, and its
flexibility. In particular, Mach provides

� object-based APIs with communication channels (efor example, ports) as object
references

� highly parallel execution, including preemptively scheduled threads and
support for SMP

� a flexible scheduling framework, with support for real-time usage

� a complete set of IPC primitives, including messaging, RPC, synchronization,
and notification

� support for large virtual address spaces, shared memory regions, and memory
objects backed by persistent store

22 Mach Kernel Abstractions

C H A P T E R 3

Mach

� proven extensibility and portability, for example across instruction set
architectures and in distributed environments

� security and resource management as a fundamental principle of design; all
resources are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstractions that have been designed to be both simple
and powerful. The main kernel abstractions are

� Tasks .The units of resource ownership; each task consists of a virtual address
space, a port right name space, and a set of threads.

� Threads. The units of CPU execution.

� Address space. In conjunction with memory managers, Mach implements the
notion of a sparse virtual address space and shared memory.

� Memory objects. The internal units of memory management. Memory objects
include named entries and regions; they are representations of
potentially-persistent data that may be mapped into address spaces.

� Ports. Secure, simplex communication channels, accessible only via send and
receive capabilities (rights).

� IPC. Message queues, remote procedure calls, notifications, semaphores, and
lock sets.

� Time. Clocks, timers, and waiting.

At the trap level, the interface to most Mach abstractions consists of messages sent
to and from kernel ports representing those objects. The trap-level interfaces (such
as mach_msg_overwrite_trap) and message formats are themselves abstracted in
normal usage by the Mach Interface Generator (MIG). MIG is used to compile
procedural interfaces to the message-based APIs, based on descriptions of those
APIs.

C H A P T E R 3

Mach

Tasks and Threads 23

Tasks and Threads

Mac OS X processes and POSIX threads (PThreads) are implemented on top of
Mach tasks and threads, respectively. A thread is the point of control. A task exists
to provide resources for the threads it contains. This split is made to provide for
parallelism and resource sharing.

A thread:

� is a point of control flow in a task

� has access to all of the elements of the containing task

� executes (potentially) in parallel with other threads, even threads within the
same task

� has minimal state information, for low overhead

A task:

� is a collection of system resources; these resources, with the exception of the
address space, are referenced by ports. These resources may be shared with
other tasks if rights to the ports are so distributed.

� provides a large, potentially sparse address space, referenced by machine
address; portions of this space may be shared through inheritance or external
memory management.

� contains some number of threads.

Note that a task has no life of its own; only threads execute instructions. When it is
said that “task Y does X,” what is really meant is that “a thread contained within
task Y does X.”

A task is a fairly expensive entity. It exists to be a collection of resources. All of the
threads in a task share everything. Two tasks share nothing without an explicit
action (although the action is often simple) and some resources (such as port receive
rights) cannot be shared between two tasks at all.

24 Tasks and Threads

C H A P T E R 3

Mach

A thread is a fairly lightweight entity. It is fairly cheap to create and has low
overhead to operate. This is true because a thread has little state information(mostly
its register state); its owning task bears the burden of resource management. On a
multiprocessor machine, it is possible for multiple threads in a task to execute in
parallel. Even when parallelism is not the goal, multiple threads have an advantage
in that each thread can use a synchronous programming style, instead of attempting
asynchronous programming with a single thread attempting to provide multiple
services.

A thread is the basic computational entity. A thread belongs to one and only one
task that defines its virtual address space. To affect the structure of the address
space or to reference any resource other than the address space, the thread must
execute a special trap instruction that causes the kernel to perform operations on
behalf of the thread or to send a message to some agent on behalf of the thread. In
general, these traps manipulate resources associated with the task containing the
thread. Requests can be made of the kernel to manipulate these entities: to create
them, delete them, and affect their state.

Mach provides a flexible framework for thread scheduling policies. Early versions
of Mac OS X support both the time-sharing and fixed-priority policies. A
timesharing thread’s priority is raised and lowered to balance its resource
consumption against other time-sharing threads.

Fixed-priority threads execute for a certain quantum of time, and then are put at the
end of the queue of threads of equal priority. Setting a fixed priority thread's
quantum level to infinity allows the thread to run until it blocks, or until it is
preempted by a thread of higher priority. High priority real-time threads are
usually fixed priority.

Future versions of Mac OS X may have additional scheduling policies, for more
sophisticated real-time support.

C H A P T E R 3

Mach

Ports, Port Rights, Port Sets, and Port Name Spaces 25

Ports, Port Rights, Port Sets, and Port Name Spaces

With the exception of the task’s virtual address space, all other Mach resources are
accessed through a level of indirection known as a port. A port is an endpoint of a
unidirectional communication channel between a client who requests a service and
a server who provides the service. If a reply is to be provided to such a service
request, a second port must be used.

In most cases, the resource that is accessed by the port (that is, named by it) is
referred to as an object. Most objects named by a port have a single receiver and
(potentially) multiple senders. That is, there is exactly one receive port, and at least
one sending port, for a typical object such as a message queue.

The service to be provided by an object is determined by the manager that receives
the request sent to the object. It follows that the receiver for ports associated with
kernel-provided objects is the kernel and the receiver for ports associated with
task-provided objects is the task providing that object.

For ports that name task-provided objects, it is possible to change the receiver of
requests for that port to a different task, for example by passing the port to that task
in a message. A single task may have multiple ports that refer to resources it
supports. For that matter, any given entity can have multiple ports that represent it,
each implying different sets of permissible operations. For example, many objects
have a name port and a control port (sometimes called the privileged port). Access
to the control port allows the object to be manipulated; access to the name port
simply names the object, for example, to return information about it.

Tasks have permissions to access ports in certain ways (send, receive, send-once);
these are called port rights. A port can be accessed only via a right. Ports are often
used to grant clients access to objects within Mach. Having the right to send to the
object’s IPC port denotes the right to manipulate the object in prescribed ways. As
such, port right ownership is the fundamental security mechanism within Mach.
Having a right to an object is to have a capability to access or manipulate that object.

Port rights can be copied and moved between tasks via IPC. Doing so, in effect,
passes capabilities to some object or server.

26 Memory Management

C H A P T E R 3

Mach

One type of object referred to by a port is a port set. As the name suggests, a port set
is a set of port rights that can be treated as a single unit when receiving a message
or event from any of the members of the set. Port sets permit one thread to wait on
a number of message and event sources, for example in work loops.

Traditionally in Mach, the communication channel denoted by a port was always a
queue of messages. However, Mac OS X supports additional types of
communication channels, and these new types of IPC object are also represented by
ports and port rights. See the section, “Task to Task Communication (IPC)”
(page 28), for more details about messages and other IPC types.

Ports and port rights do not have systemwide names that allow arbitrary ports or
rights to be manipulated directly. Ports can be manipulated by a task only if the task
has a port right in its port name space. A port right is specified by a port name, an
integer index into a 32-bit port name space. Each task has associated with it a single
port name space.

Tasks acquire port rights when another task explicitly inserts them into its name
space, when they receive rights in messages, by creating objects that return a right
to the object, and via Mach calls for certain special ports (mach_thread_self,
mach_task_self, and mach_reply_port.)

Memory Management

As with most modern operating systems, Mach provides addressing to large,
sparse, virtual address spaces. Runtime access is made via virtual addresses that
may not correspond to locations in physical memory at the initial time of the
attempted access. Mach is responsible for reconciling a requested access in virtual
space with a location in physical memory. It does so through demand paging.

A range of a virtual address space is populated with data when a memory object is
mapped into that range. All data in an address space is ultimately provided through
memory objects. Mach asks the owner of a memory object (a pager) for the contents
of a page when establishing it in physical memory and returns the possibly
modified data to the pager before reclaiming the page. Mac OS X includes two
built-in pagers—the default pager and the vnode pager.

C H A P T E R 3

Mach

Memory Management 27

The default pager handles nonpersistent memory, known as anonymous memory.
Anonymous memory is zero-initialized, and it exists only during the life of a task.
The vnode pager maps files into memory objects. Mach exports an interface to
memory objects to allow their contents to be contributed by user-mode tasks. This
interface is known as the External Memory Management Interface, or EMMI.

The memory management subsystem exports virtual memory handles known as
named memory entries. Like most kernel resources, these are denoted by ports.
Having a named memory entry handle allows the owner to map the underlying
virtual memory object or to pass the right to map the underlying object to others.
Mapping a named entry in two different tasks results in a shared memory window
between the two tasks, thus providing a flexible method for establishing shared
memory.

Address ranges of virtual memory space may also be populated through direct
allocation (using vm_allocate). The underlying virtual memory object is
anonymous and backed by the default pager. Shared ranges of an address space
may also be set up via inheritance. When new tasks are created, they are cloned
from a parent. This cloning pertains to the underlying memory address space as
well. Mapped portions of objects may be inherited as a copy, or as shared, or not at
all, based on attributes associated with the mappings. Mach practices a form of
delayed copy known as copy-on-write to optimize the performance of inherited
copies on task creation.

Rather than directly copying the range, a copy-on-write optimization is
accomplished by protected sharing. The two tasks share the memory to be copied,
but with read-only access. When either task attempts to modify a portion of the
range, that portion is copied at that time. This lazy evaluation of memory copies is
an important optimization that permits simplifications in several areas, notably the
messaging APIs.

One other form of sharing is provided by Mach, through the export of named
regions. A named region is a form of a named entry, but instead of being backed by
a virtual memory object, it is backed by a virtual map fragment. This fragment may
hold mappings to numerous virtual memory objects. It is mappable into other
virtual maps, providing a way of inheriting not only a group of virtual memory
objects but also their existing mapping relationships. This feature offers significant
optimization in task setup, for example when sharing a complex region of the
address space used for shared libraries.

28 Task to Task Communication (IPC)

C H A P T E R 3

Mach

Task to Task Communication (IPC)

Communication between tasks is an important element of the Mach philosophy.
Mach supports a client/server system structure in which tasks (clients) access
services by making requests of other tasks (servers) via messages sent over a
communication channel.

The endpoints of these communication channels in Mach are called ports, while
port rights denote permission to use the channel. The forms of IPC provided by
Mach include

� message queues

� semaphores

� notifications

� lock sets

� remote procedure calls (RPCs)

The type of IPC object denoted by the port determines the operations permissible
on that port, and how (and whether) data transfer occurs.

Important
The IPC facilities in Mac OS X are in a state of transition. In
early versions of the system, not all of these IPC types may
be implemented.

There are two fundamentally different Mach APIs for raw manipulation of ports—
the mach_ipc family and the mach_msg family. Within reason, both families may be
used with any IPC object; however, the mach_ipc calls are preferred in new code.
The mach_ipc calls maintain state information where appropriate in order to support
the notion of a transaction. The mach_msg calls are supported for legacy code but
deprecated; they are stateless.

C H A P T E R 3

Mach

Task to Task Communication (IPC) 29

IPC Transactions and Event Dispatching
When a thread calls mach_ipc_dispatch, it repeatedly processes events coming in on
the registered port set. These events could be an argument block from an RPC object
(as the results of a client’s call), a lock object being taken (as a result of some other
thread’s releasing the lock), a notification or semaphore being posted, or a message
coming in from a traditional message queue.

These events are handled via callouts from mach_msg_dispatch. Some events imply
a transaction during the lifetime of the callout. In the case of a lock, the state is the
ownership of the lock. When the callout returns, the lock is released. In the case of
remote procedure calls, the state is the client’s identity, the argument block, and the
reply port. When the callout returns, the reply is sent.

When the callout returns, the transaction (if any) is completed, and the thread waits
for the next event. The mach_ipc_dispatch facility is intended to support work loops.

Message Queues
Originally, the sole style of interprocess communication in Mach was the message
queue. Only one task can hold the receive right for a port denoting a message queue.
This one task is allowed to receive (read) messages from the port queue. Multiple
tasks can hold rights to the port that allow them to send (write) messages into the
queue.

A task communicates with another task by building a data structure that contains a
set of data elements and then performing a message-send operation on a port for
which it holds send rights. At some later time, the task with receive rights to that
port will perform a message-receive operation.

A message may consist of some or all of the following:

� pure data

� copies of memory ranges

� port rights

� kernel implicit attributes, such as the sender’s security token

30 Task to Task Communication (IPC)

C H A P T E R 3

Mach

The message transfer is an asynchronous operation. The message is logically copied
into the receiving task, possibly with copy-on-write optimizations. Multiple threads
within the receiving task can be attempting to receive messages from a given port,
but only one thread can receive any given message.

Semaphores
Semaphore IPC objects support wait, post, and post all operations. These are
counting semaphores, in that posts are saved (counted) if there are no current
waiting threads. A post all operation wakes up all currently waiting threads. There
is no data associated with a semaphore.

Notifications
Like semaphores, notification objects also support post and wait operations, but
with the addition of a state field. The state is a fixed-size, fixed-format field that is
defined when the notification object is created. Each post updates the state field;
there is a single state, that is overwritten by each post.

Locks
A lock is a mutex. The primary interfaces to locks are transaction oriented (see “IPC
Transactions and Event Dispatching” (page 29)). During the transaction, the thread
holds the lock. When it returns from the transaction, the lock is released. There is no
data associated with the lock.

Remote Procedure Calls (RPCs)
As the name implies, an RPC object is designed to facilitate and optimize remote
procedure calls. The primary interfaces to RPC objects are transaction oriented (see
“IPC Transactions and Event Dispatching” (page 29))

When an RPC object is created, a set of argument block formats is defined. When an
RPC (a send on the object) is made by a client, it causes a message in one of the
predefined formats to be created and queued on the object, then eventually passed
to the server (the receiver). When the server returns from the transaction, the reply
is returned to the sender. Mach tries to optimize the transaction by executing the
server using the client’s resources; this is called thread migration.

C H A P T E R 3

Mach

Time Management 31

Time Management

The traditional abstraction of time in Mach is the clock, which provides a set of
asynchronous alarm services based on mach_timespec_t. There are one or more
clock objects, each defining a monotonically increasing time value expressed in
nanoseconds. The real-time clock is built in, and is the most important, but there
may be other clocks for other notions of time in the system. Clocks support
operations to get the current time, sleep for a given period, set an alarm (a
notification that is sent at a given time), and so forth.

The mach_timespec_t APIs are deprecated in Mac OS X. The newer and preferred
APIs are based on timer objects, that in turn use AbsoluteTime as the basic data type.
AbsoluteTime is a machine-dependent type, typically based on the platform-native
time base. Routines are provided to convert AbsoluteTime values to and from other
data types, such as nanoseconds. Timer objects support asynchronous, drift-free
notification, cancellation, and premature alarms. They are more efficient and permit
higher resolution than clocks.

Important
As with several other Mach services, time management is in
a state of transition in Mac OS X. Early versions of the system
may not implement timer objects.

33

C H A P T E R 4

4 BSD

The BSD portion of the Mac OS X kernel is derived from FreeBSD, a version of
4.4BSD that offers advanced networking, performance, security, and compatibility
features. Specifically, the BSD layer is based on the 4.4BSD-Lite2 release from
Computer Systems Research Group (CSRG) at the University of California at
Berkeley. BSD provides many advanced features, including these:

� Preemptive multitasking with dynamic priority adjustment. Smooth and fair
sharing of the computer between applications and users is ensured, even under
the heaviest of loads.

� Multiuser access. Many people can use a Mac OS X system simultaneously for a
variety of things. This means, for example, that system peripherals such as
printers and disk drives are properly shared between all users on the system or
the network and that individual resource limits can be placed on users or groups
of users, protecting critical system resources from overuse.

� Strong TCP/IP networking with support for industry standards such as SLIP,
PPP, NFS, DHCP, and NIS. Mac OS X can interoperate easily with other systems
as well as act as an enterprise server, providing vital functions such as NFS
(remote file access) and email services, or Internet services such as HTTP, FTP,
routing, and firewall (security) services.

� Memory protection. Applications cannot interfere with each other. One
application crashing does not affect others in any way.

� Virtual memory and dynamic memory allocation. Applications with large
appetites for memory are satisfied while still maintaining interactive response to
users. With the virtual memory system in Mac OS X, each application has access
to its own 4 GB memory address space; this should satisfy even the most
memory-hungry applications.

34 BSD Facilities

C H A P T E R 4

BSD

� Support for kernel threads, based on Mach threads. User-level threading
packages are implemented on top of kernel threads. Each kernel thread is an
independently scheduled entity. When a thread from a user process blocks in a
system call, other threads from the same process can continue to execute on that
or other processors. By default, a process in the conventional sense has one
thread, the main thread. A user process can use the POSIX thread API to create
other user threads.

� SMP support. Support is included for machines with multiple CPUs.

� Source code. Developers gain the greatest degree of control over the BSD
programming environment because source is included.

� Many of the POSIX APIs.

BSD Facilities

The facilities that are available to a user process are logically divided into two parts:
kernel facilities directly implemented by code running in the operating system, and
system facilities implemented either by the system, or in cooperation with a server
process.

The facilities implemented in the kernel define the virtual machine in which each
process runs. Like many real machines, this virtual machine has memory
management, an interrupt facility, timers, and counters.

The virtual machine also allows access to files and other objects through a set of
descriptors. Each descriptor resembles a device controller and supports a set of
operations. Like devices on real machines, some of which are internal to the
machine and some of which are external, parts of the descriptor machinery are built
into the operating system, while other parts are often implemented in server
processes.

The BSD component provides the following kernel facilities

� processes and protection

� host and process identifiers

� process creation and termination

C H A P T E R 4

BSD

BSD Facilities 35

� user and group IDs

� process groups

� memory management

� text, data, stack, and dynamic shared libraries

� mapping pages

� page protection control

� synchronization primitives

� signals

� signal types

� signal handlers

� sending signals

� timing and statistics

� real time

� interval time

� descriptors

� fles

� pipes

� sockets

� POSIX shared memory

� POSIX semaphores

� resource controls

� process priorities

� resource utilization and resource limits

� quotas

36 Differences between Mac OS X and BSD

C H A P T E R 4

BSD

� system operation support

� bootstrap operations

� shut-down operations

� accounting

BSD system facilities (facilities that may interact with user space) include

� generic input/output operations such as read and write, nonblocking and
asynchronous operations

� file system operations

� interprocess communication

� handling of terminals and other devices

� process control

� networking operations

Differences between Mac OS X and BSD

Although the BSD portion of Mac OS X is primarily derived from FreeBSD, some
changes have been made.

� The sbrk() system call for memory management has not been implemented in
Mac OS X.

� The Mac OS X runtime model supports dynamic shared libraries. This model
uses Mach-O and PEF binary file formats; the dynamic link editor (dyld) and the
Code Fragment Manager (CFM) use these formats respectively. The kernel
supports execve() with Mach-O binaries. Mapping and management of Mach-O
dynamic shared libraries, as well as launching of PEF-based applications, are
performed by user-space code.

� Mac OS X does not support memory-mapped devices through the mmap() API.

C H A P T E R 4

BSD

For Further Reading 37

� The swapon() call is not supported; macx_swapon() is the equivalent call from the
Mach pager.

� The Unified Buffer Cache implementation in Mac OS X differs from that found
in FreeBSD.

In addition, several new features have been added that are specific to the Mac OS X
(Darwin) implementation of BSD. These features are not found in FreeBSD.
� enhancements to file -system buffer cache and file I/O clustering

� adaptive and speculative read ahead

� user process controlled read ahead

� time aging of the file-system buffer cache

� ehancements to file -system support

� implementation of Apple extensions for ISO-9660 file systems

� multi-threaded asynchronous I/O for NFS

� addition of system calls to support semantics of Mac OS Extended file
systems

� additions to naming conventions for pathnames, as required for accessing
multiple forks in Mac OS Extended file systems

For Further Reading

The BSD component of the Mac OS X kernel is complex. A complete description is
beyond the scope of this document. However, many excellent references exist for
this component. If you are interested in BSD, be sure to refer to the Bibliography for
further information.

Although the BSD layer of Mac OS X is derived from 4.4BSD, keep in mind that it is
not identical to 4.4BSD. Some functionality of 4.4 BSD has not been included in Mac
OS X. Some new functionality has been added. The cited reference materials are
recommended for additional reading. However, they should not be presumed as
forming a definitive description of Mac OS X.

39

C H A P T E R 5

5 Device Drivers and the I/O Kit

Those of you who are already familiar with writing device drivers for Mac OS 8 and
9 or for BSD will discover that writing drivers for Mac OS X requires some new
ways of thinking. In creating Mac OS X, Apple has completely redesigned the
Macintosh I/O architecture, providing a framework for simplified driver
development, supporting many categories of devices. This framework is called the
I/O Kit.

The I/O Kit uses an object-oriented programming model, implemented in a
restricted subset of C++. Use of object-oriented frameworks can dramatically
increase developer productivity. Once you are familiar with the new model, you
should find that it makes writing device drivers easier and more efficient than ever
before.

From a programming perspective, the I/O Kit provides an abstract view of the
system hardware to the upper layers of Mac OS X. By starting with properly
designed base classes, you gain a head start in writing a new driver; with much of
the driver code already written, the you need only to fill in the specific code that
makes your driver different.

Part of the philosophy of the I/O Kit is to make the design completely open. Rather
than hiding APIs in an attempt to protect developers from themselves, all of the I/O
Kit source is available as part of Darwin. You can use the source code as an aid to
designing (and debugging) new drivers.

Instead of hiding the interfaces, Apple’s designers have chosen to lead by example.
Sample code and classes show the recommended (easy) way to write a driver.
However, developers are not prevented from doing things the hard way (or the
wrong way). Instead, attention has been concentrated on making the “best” ways
easy to follow.

40 Redesigning the I/O Model

C H A P T E R 5

Device Drivers and the I/O Kit

Redesigning the I/O Model

You might ask why Apple chose to redesign the I/O model. At first glance, it might
seem that reusing the model from Mac OS 9 or FreeBSD would have been an easier
choice. There are several reasons for the decision, however.

Neither the Mac OS 8 and 9 driver model nor the FreeBSD model offered a sufficient
feature set to meet the needs of Mac OS X. The underlying operating-system
technology of Mac OS X is very different from that of Mac OS 8 and 9. The Mac OS X
kernel is significantly more advanced than the previous Mac OS system
architecture; Mac OS X needs to handle memory protection, preemption,
multiprocessing, and other features not present in previous versions of Mac OS.
Although FreeBSD is capable of handling these features, the BSD model did not
offer the automatic configuration, stacking, power management, or dynamic
device-loading features required in a modern, consumer-oriented operating
system.

By redesigning the I/O architecture, Apple’s engineers can take best advantage of
the operating-system features in Mac OS X. For example, virtual memory (VM) is
not a fundamental part of the operating system in Mac OS 8 and 9. Thus, every
driver writer must know about (and write for) VM.This has presented certain
complications for developers. In contrast, Mac OS X has simplified driver
interaction with VM. VM capability is inherent in the Mac OS X operating system
and cannot be turned off by the user. Thus, VM capabilities can be abstracted into
the I/O Kit, and the code for handling VM need not be written for every driver.

Mac OS X offers an unprecedented opportunity to take advantage of hardware
complexity without the requirement of encoding software complexity into each
new device driver. Under Mac OS 9, for example, all software development kits
(SDKs) were independent of each other, duplicating functionality between them. In
Mac OS X, the I/O Kit is delivered as part of the single kernel development kit
(KDK); all portions of the KDK rely on common underpinnings.

In contrast with traditional I/O models, the reusable code model provided by the
I/O Kit can decrease your development work substantially. In porting drivers from
Mac OS 9, for example, the Mac OS X counterparts have been up to 75% smaller.

C H A P T E R 5

Device Drivers and the I/O Kit

I/O Kit Architecture 41

In general, all hardware support is provided directly by I/O Kit entities. One
exception to this rule is imaging devices such as printers, scanners, and digital
cameras (although these do make some use of I/O Kit functionality). Specifically,
although communication with these devices is handled by the I/O Kit (for instance,
under the Firewire or USB families), support for particular device characteristics is
handled by user-space code (see “Accessing Kernel APIs from User Space”
(page 45) for further discussion). If you need to support imaging devices, you
should employ the appropriate imaging software development kit (SDK).

The I/O Kit attempts to represent, in software, the same hierarchy that exists in
hardware. Some things are difficult to abstract, however. When the hardware
hierarchy is difficult to represent (for example, if layering violations occur), then the
I/O Kit abstractions provide less help for writing drivers.

In addition, all drivers exist to drive hardware; all hardware is different. Even with
the reusable model provided by the I/O Kit, you still need to be aware of any
hardware quirks. The code to support those quirks still needs to be unique from
driver to driver.

Although most developers should be able to take full advantage of I/O Kit device
families (see “Families” (page 42)), there will occasionally be some who cannot.
Even those developers should be able to make use of parts of the I/O Kit, however.
In any case, the source code is always available. Developers who need to do so can
replace functionality and modify the classes themselves.

In designing the I/O Kit, one goal has been to make developers’ lives easier.
Unfortunately, it is not possible to make all developers’ lives uniformly easy.
Therefore, a second goal of the I/O Kit design is to meet the needs of the majority
of developers, without getting in the way of the minority that need lower level
access to the hardware.

I/O Kit Architecture

The I/O Kit provides a model of system hardware in an object-oriented framework.
Each type of service or device is represented by a C++ class; each discrete service or
device is represented by an instance (object) of that class.

42 I/O Kit Architecture

C H A P T E R 5

Device Drivers and the I/O Kit

There are three major conceptual elements of the I/O Kit architecture:

� Families

� Drivers

� Nubs

Families
A family defines a collection of software abstractions that are common to all devices
of a particular category. These abstractions are implemented in C code and C++
classes. Families may include headers, libraries, sample code, test harnesses, and
documentation. If it seems more familiar, however, you can think of a family simply
as a library.

Families define and implement the abstractions that are common to all devices of a
particular category. They provide the APIs, generic support code, and at least one
example driver (in the documentation).

Families provide services for many different categories of devices. For example,
there are protocol families (such as SCSI, USB, and Firewire), storage families (disk),
network families, and families to describe human interface devices (mouse, and
keyboard). When devices have features in common, the software that supports
those features is most likely found in a family.

Common abstractions are defined and implemented by the family, allowing all
drivers in a family to share similar features easily. For example, all SCSI controllers
have certain things they must do, such as scanning the SCSI bus. The SCSI family
defines and implements the functionality that is common to SCSI controllers.
Because this functionality has been included in the SCSI family,you do not need to
include scanning code (for example) in your new SCSI controller driver.

Instead, you can concentrate on device-specific details that make your driver
different from other SCSI drivers. The use of families means there is less code for a
developer to write.

Families are dynamically loadable; they are loaded when needed and unloaded
when no longer needed. Although some common families may be preloaded at
system startup, all families should be considered to be dynamically loadable (and,
therefore, potentially unloaded). See the “Connection Example” (page 44) for an
illustration.

C H A P T E R 5

Device Drivers and the I/O Kit

I/O Kit Architecture 43

Drivers
A driver is an I/O Kit object that manages a specific piece of hardware,
implementing the appropriate I/O Kit abstractions for controlling that hardware.
When a driver is loaded, its required families are also loaded to provide necessary,
common functionality. The request to load a driver causes all of its dependent
requirements (and their requirements) to be loaded first. After all requirements are
met, the requested driver is loaded as well. See the “Connection Example” (page 44)
for an illustration.

Note that families are loaded upon demand of the driver, not the other way around.
Occasionally, a family may already be loaded when a driver demands it; however,
you should never assume this. To ensure that all requirements are met, each device
driver should list all of its requirements in its property list.

Each driver is in a client-provider relationship, wherein every driver must know
about both the family it inherits from and the family it connects to. A SCSI controller
driver, for example, must be able to communicate with both the SCSI family and the
PCI family (as a client of PCI and provider of SCSI). A SCSI disk driver
communicates with both the SCSI and storage families.

Nubs
A nub is an I/O Kit object that represents a detected, controllable entity; that is, a
nub represents a device or logical service. For example, a nub may represent a bus,
a disk, a disk partition, a graphics adaptor, a keyboard, or any number of similar
entities.

A nub is loaded as part of the family that instantiates it. Each nub provides access
to the device or service that it represents and provides services such as matching,
arbitration, and power management.

For example, nubs match devices to drivers. Each nub provides a bridge between
two drivers (and, by extension, between two families). It is most common that a
driver publishes one nub for each individual device or service it controls; however,
it is also possible for a driver that controls only a single device or service to act as its
own nub. See the “Connection Example” (page 44) for an illustration.

44 I/O Kit Architecture

C H A P T E R 5

Device Drivers and the I/O Kit

Connection Example
Figure 5-1 illustrates the I/O Kit architecture, using several example drivers and
their corresponding families and nubs. Note that many different family and driver
combinations are possible; this diagram shows only one possibility. Arrows
represent order of creation or discovery.

Figure 5-1 I/O Kit Architecture example: families, drivers, and nubs

This example illustrates how a SCSI disk driver (Storage family) is connected to the
PCI bus. The connection is made in several steps.

1. The PCI Bbs driver discovers a PCI device and announces its presence by
creating a nub (IOPCIDevice). The nub’s class is defined by the PCI family.

2. The nub identifies (matches) the correct device driver and requests that the
driver be loaded. At the end of this matching process, a SCSI controller driver
has been found and loaded. Loading the controller driver causes all required
families to be loaded as well. In this case, the SCSI family is loaded; the PCI
family (also required) is already present. The SCSI controller driver is given a
reference to the IOPCIDevice nub.

3. The SCSI controller driver scans the SCSI bus for devices. Upon finding a device,
it announces the presence of the device by creating a nub (IOSCSIDevice). The
class of this nub is defined by the SCSI family.

4. The nub identifies (matches) the correct device driver and requests that the
driver be loaded. At the end of this matching process, a disk driver has been
found and loaded. Loading the disk driver causes all required families to be
loaded as well. In this case, the Storage family is loaded; the SCSI family (also
required) is already present. The disk driver is given a reference to the
IOSCSIDevice nub.

Drivers

Families

Nubs

Bus driver

Nub

IOPCIDevice IOSCIDevice

Nub

Controller Disk

StoragePCI SCSI

C H A P T E R 5

Device Drivers and the I/O Kit

Accessing Kernel APIs from User Space 45

Accessing Kernel APIs from User Space

Mac OS X draws a distinction between kernel space and user space. Applications in
user space cannot interface directly with kernel-space APIs.

Some family services are never exported to user space; these services are available
only inside the kernel. One such example is the PCI family. For stability and security
reasons, direct access to PCI resources from user space is forbidden.

In other cases, however, family services may need to be accessed from user space.
For example, a game may need to interact with system software to set monitor
depth or sound volume. As another example, a disk backup program may need to
act as the “driver” for a tape drive. Other examples of user applications that may
need to interact with nubs in kernel space might include those running scanners,
printers, digital cameras, and so forth.

User Client Access
Many types of I/O Kit devices are made accessible across the user-kernel address
space boundary by means of a user client. A user client is implemented in two parts
and has a presence in both user and kernel space. The kernel portion is usually part
of an appropriate family. The user portion is linked into the application as a library
or Core Foundation plug-in (CFPlugin). A user client looks like a library when
viewed from user space. From kernel space, it looks like a driver.

The user client handles negotiation, protection, authentication, and other tasks in
user space as if it were an in-kernel driver. An application can communicate with a
device by acquiring the device nub through an appropriate user client. The user
client attaches to the (kernel-space) nub on behalf of the (user-space) application.

Figure 5-2 illustrates one example of a user client, in this case, a USB printer
application (OHCI is the standard USB controller interface). The printer “driver” is
in user space (recall that printer support is outside of the kernel). A user client
permits the communication of raw USB commands across the user-kernel address
space boundary.

46 Accessing Kernel APIs from User Space

C H A P T E R 5

Device Drivers and the I/O Kit

Note that many different family and driver combinations are possible; this diagram
shows only one possibility. Arrows represent order of creation or discovery. See
“I/O Kit Architecture” (page 41) for a description of families, drivers, and nubs, as
well as an explanation of their connection path.

Figure 5-2 Interaction with I/O Kit from user space

Many families already provide the necessary functionality for creating user clients.
If you develop custom drivers that do not use I/O Kit families, however, you will
need to write additional code. Any code that communicates between user space and
kernel space must use of one or more of the following facilities available in
Mac OS X:

� BSD system calls

� Mach IPC

� Mach shared memory

The I/O Kit uses primarily Mach IPC and Mach shared memory. In contrast, the
networking and file system components of Mac OS X use primarily BSD system
calls.

Kernel space

User space

Drivers

Families

IOUSBDevice

NubNubs

Printer driverApplications

Bus driver

PCI

OHCI

USB

User
client

Nub

IOPCIDevice

C H A P T E R 5

Device Drivers and the I/O Kit

Accessing Kernel APIs from User Space 47

BSD Media Shim
The BSD media shim provides another way in which kernel APIs are exported into
user space. The BSD media shim is not a user client; it is implemented entirely in
kernel code. It provides a connection between a disk driver and BSD, by way of a
nub (IOMedia) created by the disk driver. Although the BSD disk shim is included in
the storage family, it does not inherit directly from the storage family.

The BSD media shim uses BSD system calls to provide user-space applications with
access to disks by way of BSD-style device nodes (in the /dev directory). These
device nodes are owned and managed by the device file system (devfs), a BSD
analogue to an I/O Kit user client. The device file system uses a file-system model
to represent devices rather than files.

Figure 5-3 shows the BSD media shim providing a connection for a SCSI disk. Note
that many different family and driver combinations are possible; this diagram
shows only one possibility. Arrows represent order of creation or discovery. See
“I/O Kit Architecture” (page 41) for a description of families, drivers, and nubs, as
well as an explanation of their connection path.

Figure 5-3 The BSD media shim providing user-space access to disks

Kernel space

User space

I/O Kit

Bus driver

PCI

Drivers

Families

BSD

Nub

IOPCIDevice IOSCIDevice

Nub

/dev

Nub

IOMedia

Application

devfs

Nubs

Controller

SCSI
File system

BSD
media shim

Disk

Storage

49

C H A P T E R 6

6 Networking and Network Kernel
Extensions

Network kernel extensions (NKEs) represent a specific case of a Mac OS X kernel
extension. NKEs provide a way to extend and modify the networking infrastructure
of Mac OS X dynamically, without recompiling or relinking the kernel. The effect is
immediate and does not require rebooting the system.

Much of the content of this chapter has been excerpted from Chapter 1 of Inside Mac
OS X: Network Kernel Extensions. For further information on to this topic, you should
refer to that book.

NKEs can be used to

� monitor network traffic

� modify network traffic

� receive notification of asynchronous events from the driver layer

In the last case, such events are received by the data link and network layers.
Examples of these events include power management events and interface status
changes. See Figure 6-1 (page 51) for an illustration of the data link and network
layers.

Specifically, NKEs allow you to

� create protocol stacks that can be loaded and unloaded dynamically and
configured automatically

� create modules that can be loaded and unloaded dynamically at specific
positions in the network hierarchy.

50 Review of 4.4BSD Network Architecture

C H A P T E R 6

Networking and Network Kernel Extensions

The Kernel Extension Manager dynamically adds NKEs to the running Mac OS X
kernel inside the kernel’s address space. An installed and enabled NKE is invoked
automatically, depending on its position in the sequence of protocol components, to
process an incoming or outgoing packet.

All NKEs provide initialization and termination routines that the Kernel Extension
Manager invokes when it loads or unloads the NKE. The initialization routine
handles any operations that are needed to complete the incorporation of the NKEs
into the kernel, such as updating protosw and domain structures. Similarly, the
termination routine must remove references to the NKE from these structures to
unload itself successfully. NKEs must provide a mechanism, such as a reference
count, to ensure that the NKE can terminate without leaving dangling pointers.

Review of 4.4BSD Network Architecture

Mac OS X is based on the 4.4BSD operating system. The following structures control
the 4.4BSD network architecture:

� socket structure—used to keep track of network information on a per-file
descriptor basis. The socket structure is referenced by file descriptors from user
space.

� domain structure—describes protocol families.

� protosw structure—describes protocol handlers. (A protocol handler is the
implementation of a particular protocol in a protocol family.)

� ifnet structure—describes a network interface.

None of these structures is used uniformly throughout the 4.4BSD networking
infrastructure. Instead, each structure is used at a specific level, as shown in
Figure 6-1.

C H A P T E R 6

Networking and Network Kernel Extensions

NKE Types 51

Figure 6-1 4.4 BSD network architecture

Above the network layer, packets are isolated on a per-user (per-file descriptor)
basis. That is, packets are isolated based upon their ownership. Below the network
layer, packets are isolated based on which device they go to (or originate from). The
network layer provides a transition in how packets are viewed and processed. In the
protocol stack (network layer) and the data link layer, the point of view is
per-packet. Above these, in the socket structure, the point of view is the stream.

NKE Types

Making the 4.4BSD network architecture dynamically extensible requires several
NKE types, for use at specific places in the kernel.

� Socket NKEs —which reside between the socket layer and the transport protocol
handlers and are invoked through a protosw structure. Socket NKEs use a new
set of dispatch vectors that intercept specific socket and socket buffer utility
functions.

� Protocol family NKEs— which are collections of protocols that share a common
addressing structure. Internally, a domain structure and a chain of protosw
structures describe each protocol.

socket structure

domain structure
protosw structure

ifnet structure

Transport layer

Kernel space

Data link layer

Byte/packet delivery

Network layer

Device

Frame delivery

52 NKE Types

C H A P T E R 6

Networking and Network Kernel Extensions

� Protocol handler NKEs—which process packets for a particular protocol within
the context of a protocol family. A protosw structure describes a protocol handler
and provides the mechanism by which the handler is invoked to process
incoming and outgoing packets and for invoking various control functions.

� Data link NKEs—which are inserted below the protocol layer and above the
network interface layer. This type of NKE can passively observe traffic as it
flows in and out of the system (for example, a sniffer) or can modify the traffic
(for example, by encrypttion or address translation).

Figure 6-2 summarizes the NKE architecture.

Figure 6-2 NKE architecture

Socket NKEs operate in one of two modes: programmatic or global. Data link NKEs
operate only in global mode.

A programmatic NKE is a socket NKE that is enabled under program control, using
socket options, for a specific socket. That is, a program is responsible for enabling
these on a specific socket. Programmatic NKEs must be specified by a name (a 32-bit
integer handle); these should be registered with Apple. NKE handles use the same
name space as type and creator handles.

Socket infastructure (fixed)

Data link NKEs

Socket layer

Kernel space

Data link layer

User space

Protocol layer

DLIL (fixed)

Data link NKEs

IP

Socket NKE

IOKit

AppleTalk IPX ...

C H A P T E R 6

Networking and Network Kernel Extensions

Modifications to 4.4BSD Networking Architecture 53

In contrast, global socket NKEs as well as data link NKEs are automatically enabled
when they are loaded and initialized. The developer (or application) need not know
the names of the global NKEs that are enabled.

Modifications to 4.4BSD Networking Architecture

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were
modified as follows:

� The protosw array referenced by the domain structure is now a linked list,
thereby removing the array’s upper bound. The new max_protohdr member
defines the maximum protocol header size for the domain. The new dom_refs
member is a reference count that is incremented when a new socket for this
address family is created and is decremented when a socket for this address
family is closed.

� The protosw structure is no longer an array. The pr_next member has been added
to link the structures together. This change has implications for protox usage for
AF_INET and AF_ISO input packet processing. The pr_flags member is an
unsigned integer instead of a short. NKE hooks have been added to link NKE
descriptors together.

55

C H A P T E R 7

7 File Systems and VFS Stacks

Mac OS X provides “out-of-the-box” support for several different file systems.
These include Mac OS Extended format (HFS+), the BSD standard file system
format (UFS), NFS (an industry standard for networked file systems), and ISO 9660
(used for CD-ROM).

Support is also included for reading the older, Mac OS Standard format (HFS)
file-system type; however, you should not plan to format new volumes using Mac
OS Standard format. Mac OS X cannot boot from these file systems, nor does the
Mac OS Standard format provide some of the information required by Mac OS X.

Mac OS X boots and “roots” from Mac OS Extended format. That is, Mac OS X can
mount a Mac OS Extended Format volume and use it as the primary, or root, file
system. The Mac OS Extended format provides many of the same characteristics as
Mac OS Standard format but adds additional support for modern features such as
file permissions, longer filenames, Unicode, both hard and symbolic links, and
larger disk sizes.

Other file systems can be mounted, allowing users to gain access to additional
volume formats and features. For example, UFS provides case sensitivity and other
characteristics that may be expected by BSD commands. In contrast, Mac OS
Extended Format is not case-sensitive (but is case-preserving).

NFS provides access to network servers as if they were locally mounted file
systems. The Carbon application environment mimics many expected behaviors of
Mac OS Extended format on top of both UFS and NFS. These include such
characteristics as Finder Info, file ID access, and aliases.

By using the Mac OS X Virtual File System (VFS) capability and writing kernel
extensions, you can add support for other file systems. Examples of file systems that
are not currently supported in Mac OS X but that you may wish to add to the system

56 Working With the File System

C H A P T E R 7

File Systems and VFS Stacks

include the Andrew file system (AFS) and the Windows NT file system (NTFS). If
you want to support a new volume format or networking protocol, you’ll need to
write a file-system kernel extension.

Working With the File System

In Mac OS X, the vnode structure provides the internal representation of a file or
directory (folder). There is a unique vnode allocated for each active file or folder,
including the root.

Within a file system, operations on specific files and directories are implemented via
vnodes and VOP (vnode operation) calls. VOP calls are used for operations on
individual files or directories (such as open, close, read, or write). Examples include
VOP_OPEN to open a file and VOP_READ to read file contents. In contrast,
file-system-wide operations are implemented using VFS calls. VFS calls are
primarily used for operations on entire file systems; examples include VFS_MOUNT
and VFS_UNMOUNT to mount or unmount a file system, respectively. File-system
writers need to provide stubs for each of these sets of calls.

Supporting a new volume format requires implementing a new file-system type.
However, it is not always necessary to implement a new file-system type in order
to change the way in which a user interacts with files. VFS stacks allow developers
to create and layer new capabilities onto an existing file-system type.

VFS stacks provide filters between the user and the underlying file system. As
implied by Figure 7-1 (page 57), VFS stacks can run on top of any type of file system.
If your application does not need to support a volume format or networking
protocol, but does need to intercept data going into or out of the file system,
implementing a VFS stack may be the appropriate choice.

For example, VFS stacks may be used in the following sorts of application areas:

� virus checking —automatically check a file for viruses before reading its data

� compression—perform compression or decompression on-the-fly when
opening (reading) and writing files

� encryption—automatically encrypt a file as it is written, then decrypt it (with a
password) when it is opened or read

C H A P T E R 7

File Systems and VFS Stacks

Working With the File System 57

Figure 7-1 illustrates the file system architecture with several example VFS stacks
and file systems shown.

Figure 7-1 File systems and VFS stacks

When writing a VFS stack, you must create a stub for each vnode operation. In some
cases, the stub simply calls the routine of the same name in the underlying layer.
Note that stacks may be implemented directly on top of a file system or on top of
other stacks, so you cannot be sure exactly what the underlying layer will do with
a given VFS or VOP call.

In other cases, such as when creating, reading, or writing a file, your VFS stack will
intercept a call rather than simply passing it to the underlying layer. For example,
an encryption stack would intercept read and write calls in order to add encryption
or decryption filters. A virus-checking stack might intercept the open and read calls.

VFS stacks are KEXTs. The Kernel Extension Manager dynamically adds VFS stacks
and support for additional file-system types to the running Mac OS X kernel as part
of the kernel’s address space. An installed and enabled file system can be mounted
automatically or manually. Further file access goes through that file system’s calls.

Mach

File system calls

VFS

Compression stack

...

BSD

Encryption stack

HFS+ NFS UFS

58 A Politically Correct Example

C H A P T E R 7

File Systems and VFS Stacks

A Politically Correct Example

The Politically Correct File System is an example of a VFS stack. In this example, all
calls are ignored (passed to the underlying layer) except for those that create, read,
or write a file (or folder).

Upon receiving a request to create a file or folder, the Politically Correct (PC) stack
intercepts the call before it can be executed by the underlying file system. The PC
version of the create call checks the requested filename against a table of names. If
the name is deemed politically incorrect, for example if the user chooses to name a
file “vulgarity”, the PC create call chooses a more pleasing name, for example,
“politeness”. The new name is passed to the create routine of the underlying file
system.

Similarly, when a user opens a file to read or write it, such as with a text editor, the
PC read and write routines first examine the data buffer, possibly substituting
preferred words and phrases for their undesirable counterparts. After the
substitutions are made, the buffer is handed to the underlying routine, which
displays the data or writes it to disk.

Thus, if a user attempted to save a file containing a sentence such as this:

The beleaguered computer company’s woes continue, despite rising stock prices.

the PC write routine might intercept and filter this sentence to a more desirable
version:

The aspiring computer company’s joys continue, due to rising stock prices.

59

C H A P T E R 8

8 Extending the Kernel

As discussed in the chapter “Kernel Architecture” (page 13), Mac OS X provides a
kernel extension mechanism as a means of allowing dynamic loading of code into
the kernel, without the need to recompile or relink. Because these kernel extensions
(KEXTs) provide both modularity and dynamic loadability, they are a natural
choice for any relatively self-contained service that requires access to internal kernel
interfaces.

Because KEXTs run in supervisor mode in the kernel’s address space, they are also
harder to write and debug than user-level modules, and must conform to strict
guidelines. Further, kernel resources are wired (permanently resident in memory)
and are thus more costly to use than resources in a user-space task of equivalent
functionality.

In addition, although memory protection keeps applications from crashing the
system, no such safeguards are in place inside the kernel. A badly behaved kernel
extension in Mac OS X can actually cause more trouble than a badly behaved
application or extension could in Mac OS 8 or 9.

Bugs in KEXTs can have far more severe consequences than bugs in user-level code.
For example, a memory access error in a user application can, at worst, cause that
application to crash. In contrast, a memory access error in a KEXT causes a system
panic, crashing the operating system.

Finally, for security reasons, some customers restrict or don’t permit the use of
third-party KEXTs. As a result, use of KEXTs is strongly discouraged in situations
where user-level solutions are feasible. Mac OS X guarantees that user threads are
just as efficient as kernel threads, so efficiency should not be an issue. Unless your
application requires low-level access to kernel interfaces or the data stream, you
should use a higher level of abstraction when developing code for Mac OS X.

60

C H A P T E R 8

Extending the Kernel

When you are trying to determine if a piece of code should be a KEXT, the default
answer is generally no. In particular, if your code was a system extension in
Mac OS 8 or 9, that does not imply that it must necessarily be a kernel extension in
Mac OS X. There are only a few good reasons for a developer to write a kernel
extension:

� Your code needs to take a primary interrupt, that is, something in the hardware
needs to interrupt the CPU.

� The primary client of your code is inside the kernel, for example, a block device
whose primary client is a file system.

� A sufficiently large number of running applications require a resource that your
code provides; for example, you have written a file-system stack.

� Your code needs to multiplex between multiple client applications that require
high speed, excellent synchronization, or low latency.

If your code does not meet any of the above criteria, you should consider
developing it as a library or a user-level daemon, or using one of the user-level
plug-in architectures (such as QuickTime components or the Core Graphics
framework) instead of writing a kernel extension.

If you are writing device drivers or code to support a new volume format or
networking protocol, however, KEXTs may be the only feasible solution.
Fortunately, while KEXTs may be more difficult to write than user-space code,
several tools and procedures are available to enhance the development and
debugging process. See “Debugging Your KEXT” (page 63) for more information.

This chapter provides a conceptual overview of KEXTs and how to create them. If
you are interested in building a simple KEXT, see the Apple tutorials listed in the
Bibliography. These provide step-by-step instructions for creating a simple, generic
KEXT or a basic I/O Kit driver.

C H A P T E R 8

Extending the Kernel

KEXT Implementation 61

KEXT Implementation

KEXTs are implemented as bundles, folders that the Finder treats as single files. See
the chapter about bundles in Inside Mac OS X: System Overview for a discussion of
bundles.The KEXT bundle can contain the following:

� Information property list — text file that describes the contents, settings, and
requirements of the KEXT. This file is required. A KEXT bundle need contain
nothing more than this file, although most KEXTs contain one or more kernel
modules as well. See the chapter about software configuration in Inside
Mac OS X: System Overview for further information about property lists.

� Kernel module— a file in Mach-O format, containing the actual binary code
used by the KEXT. A kernel module (or KMOD) represents the minimum unit
of code that can be loaded into the kernel. A KEXT usually contains one KMOD.
If no KMODs are included, the information property list file must contain a
reference to a module in another KEXT and change its default settings.

� Resources— for example, icons or localization dictionaries. Resources are
optional; they may be useful for KEXTs that need to display a dialog or menu.
At present, no resources are explicitly defined for use with KEXTs.

KMOD Dependencies

Any KMOD can declare that it is dependent upon any other KMOD. The developer
lists these dependencies in the “Requires” field of the module’s property list file.

Before a KMOD is loaded, all of its requirements are checked. Those required
modules (and their requirements) aree loaded first, iterating back through the lists
until there are no more required modules to load. Only after all requirements are
met, is the requested KMOD loaded as well.

62 Building and Testing Your KEXT

C H A P T E R 8

Extending the Kernel

For example, device drivers (a type of KEXT) are dependent upon (require) certain
families (another type of KEXT). When a driver is loaded, its required families are
also loaded to provide necessary, common functionality. To ensure that all
requirements are met, each device driver should list all of its requirements (families
and other drivers) in its property list. See the chapter “Device Drivers and the I/O
Kit” (page 39), for an explanation of drivers and families.

It is important to list all dependencies for each KMOD. If your KEXT fails to do so,
your KMOD may not load due to unrecognized symbols, thus rendering the KEXT
useless. Dependencies in KMODs can be considered analogous to required header
files or libraries in code development; in fact, the Kernel Extension Manager uses
the standard linker to resolve KMOD requirements.

Building and Testing Your KEXT

After creating the necessary property list and C (or C++) source files, you use
Project Builder to build your KEXT as well. Any errors in the source code are
brought to your attention during the build and you are given the chance to edit your
source files and try again.

To test your KEXT, however, you need to leave Project Builder and work in the
Terminal application (or in console mode). In console mode, all system messages
are written directly to your screen, as well as to a log file (/var/log/system.log). If
you work in the Terminal application, you must view system messages in the log
file.You also need to log in to the root account (or use the su command), since only
the root account can load kernel extensions.

When testing your KEXT, you can load and unload it manually, as well as check the
load status. You can use the kextload command to load any KEXT. This command
handles matching for I/O Kit drivers, then calls kmodload. If you are not working
with the I/O Kit you can run kmodload directly. Manual pages for these, as well as
the kmodunload and kmodstat commands, are included in Mac OS X.

Note that these commands are only useful when developing a KEXT. Eventually,
after it has been tested and debugged, you install your KEXT in one of the standard
places (see “Installed KEXTs” (page 64) for details). Then, it will be loaded and
unloaded automatically at system startup and shutdown or whenever it is needed
(such as when a new device is detected).

C H A P T E R 8

Extending the Kernel

Debugging Your KEXT 63

Debugging Your KEXT

KEXT debugging can be complicated. Before you can debug a KEXT, you must first
enable kernel debugging, as Mac OS X is not normally configured to permit
debugging the kernel. Only the root account can enable kernel debugging, and you
need to reboot Mac OS X for the changes to take effect.

Kernel debugging is performed using two Mac OS X machines, called the
development machine and target machine. These machines must be connected over
a reliable network connection on the same subnet (or within a single local network).
Specifically, there must not be any intervening IP routers or other devices that could
make hardware-based Ethernet addressing impossible.

The KEXT is registered (and the KMODs loaded and run) on the target machine.
The debugger is launched and run on the development machine. You can also
rebuild your KEXT on the development machine, after you fix any errors you find.

Debugging must be performed in this fashion because you must temporarily halt
the kernel on the target machine in order to use the debugger. When you halt the
kernel, all other processes on that machine stop. However, a debugger running
remotely can continue to run and can continue to examine (or modify) the kernel on
the target machine.

Note that bugs in KEXTs may cause the target kernel to freeze or panic. If this
happens, you may not be able to continue debugging, even over a remote
connection; you have to reboot the target and start over, setting a breakpoint just
before the code where the KEXT crashed and working very carefully up to the crash
point.

KEXTs are debugged using GDB, a source-level debugger with a command-line
interface. You will need to work in the Terminal application to run GDB. For
detailed information about using GDB, see the documentation included with
Mac OS X. You can also use the help command from within GDB.

64 Installed KEXTs

C H A P T E R 8

Extending the Kernel

Because KEXT debugging happens at such a low level, you won’t be able to take
advantage of all features of GDB. For example:

� You can’t use GDB to call a function or method in a KEXT.

� You can’t use GDB to debug interrupt routines.

Use care that you do not halt the kernel for too long when you are debugging (for
example, when you set breakpoints). In a short time, internal inconsistencies can
appear that cause the target kernel to panic or freeze, forcing you to reboot the target
machine.

Installed KEXTs

The Kernel Extension Manager (KEXT Manager) is responsible for loading and
unloading all installed KMODs (commands such as kextload are used only during
development). Installed KMODs are dynamically added to the running Mac OS X
kernel as part of the kernel’s address space. An installed and enabled KMOD is
invoked as needed.

Important
Note that KEXTs are only wrappers (bundles) around a
property list, KMODs (or references to KMODs), and
optional resources. The KEXT describes what is to be loaded;
it is the KMODs that are actually loaded.

KEXTs are usually installed in the Extensions folder (at
/System/Libraries/Extensions.) The Kernel Extension Manager (in the form of a
daemon, kextd), always checks here. KEXTs can also be installed in several other
locations:

� in ROM

� in the Driver partition on a disk

� inside an application bundle

C H A P T E R 8

Extending the Kernel

Installed KEXTs 65

The last location allows an application to register KEXTs without the need to install
them permanently elsewhere within the system hierarchy. This may be more
convenient and allows the KMOD to be associated with a specific, running
application. When it starts, the application can call the Kernel Extension Manager
and register a KEXT.

For example, a network packet sniffer application might employ a Network Kernel
Extension (NKE). A tape backup application would require that a tape driver be
loaded during the duration of the backup process. When the application exits, the
kernel extension is no longer needed and can be unloaded.

Note that, although the application is responsible for registering the KEXT, this is
no guarantee that the corresponding KMODs are actually ever loaded. It is still up
to a kernel component, such as the I/O Kit, to determine a need, such as matching
a piece of hardware to a desired driver, and tell the KEXT Manager to load the
appropriate KMODs (and their dependencies).

67

C H A P T E R 9

9 Kernel Services

In a typical preemptive multitasking operating system such as Mac OS X, FreeBSD,
or Linux, user applications are not allowed direct access to shared resources such as
RAM, disks, printers, and other devices. Instead, the kernel provides controlled
access to these resources, and can thus be viewed as a service provider.

Recall that each application exists in its own (user) address space and that the kernel
exists in a separate (kernel) address space. Privileged operations, such as opening a
file, initiating network traffic, or shutting down the computer, are performed in
kernel space and are thus available only to the kernel.

Applications that need to have privileged operations performed must request the
appropriate services from the kernel. The kernel provides these operations as
services to the processes, mapping any associated parameters in and out of user
space.

Application processes include applications that are explicitly launched and run by
the user, as well as various system processes, such as daemons, that keep the system
running smoothly.

Any code to communicate between user space and kernel space must take
advantage of one or more of the following facilities available in Mac OS X:

� BSD system calls

� Mach IPC

� shared memory

In Mac OS X, where the kernel itself is modular, interaction between the various
kernel components is also in the form of services. Each component, such as Mach,
networking, or the file system, is therefore both a provider of services to
applications and other components as well as a client of kernel services itself. Kernel

68 Available Services

C H A P T E R 9

Kernel Services

space, however, is a single address space; memory is shared between kernel
components. Thus, kernel components are able to communicate more freely with
each other than with applications in user space.

Available Services

Most of the commonly-used kernel services are described below. For each service,
the provider component is named as well as the client components. A brief
description is also given. For more complete information, see the available
documentation for the component itself.

In the API listings below, header files are listed as they would be included in real
code. The default compiler flags should locate the correct file in the “well known
places”.

In addition, the following header files are assumed to be included at all times:

#include <sys/param.h> /* useful defines and limits */
#include <sys/types.h> /* exported data types */
#include <sys/systm.h> /* "systm" and NOT "system"; prototypes */
#include <libkern/libkern.h> /* more prototypes */

BSD Media Shim
Provider: I/O Kit
Clients: BSD, File systems

The BSD media shim uses BSD system calls and the I/O Kit user client facility to
export device driver interfaces into user space as BSD-style device nodes in the /dev
directory. The BSD media shim also communicates with the file system and VFS
stacks. Support for user processes is provided via devfs.

C H A P T E R 9

Kernel Services

Available Services 69

Device Driver Management
Provider: I/O Kit
Clients: I/O Kit KEXTs (families and drivers), user processes
APIs:

IOKit/IOfamily/*

These services support device driver instantiation, matching, service notification.
Family APIs publish services; drivers use devices.

Events
Provider: Mach
Clients: All kernel components, user processes

Specific services include port notifications, notification ports, and notification
events.

Exceptions, Traps
Provider: Mach
Clients: BSD, user processes

This service supports BSD signals, interrupts, and debugging, as well as various
system calls that can be accessed by user processes.

Families
Provider: I/O Kit
Clients: BSD, file systems, networking, user processes
APIs:

IOKit/IOfamily/*

This service provides APIs for I/O Kit families, including support for networking,
block, graphics, FireWire, USB, human interface, and many other device categories.

70 Available Services

C H A P T E R 9

Kernel Services

File Descriptor Management
Provider: BSD
Clients: file systems, networking, user processes
APIs:

#include <sys/filedesc.h>
#include <sys/file.h>

File descriptors provide per-process unique, nonnegative integers that are used to
identify an open file (or socket). For user processes, all interaction with files is done
via file descriptors. File descriptors are also used for access and manipulation of
POSIX semaphores and POSIX shared memory.

Host Manipulation and Inquiry
Provider: Mach
Clients: All kernel components

These services are used to get and set host-based information, such as page size and
processor count.

Interprocess Communication (IPC)
Provider: Mach
Clients: All kernel components

This service provides various specialized forms of communication between tasks
(processes) on the local machine. The particular form of IPC in use dictates how
(and whether) data is processed. Specific services include: send and receive
operations, as well as primitives for servicing ports and/or port sets. See also: “Port
Right Management” (page 72), “Task and Thread Management” (page 75),
“Memory and Address Space Management” (page 72), and “Synchronization
Primitives (Low Level)” (page 74).

Kernel Loadable Module Support
Provider: I/O Kit
Clients: file systems, networking, loadable modules

C H A P T E R 9

Kernel Services

Available Services 71

Tools: See the man pages for the following utility programs:
kextload
kextunload
kmodload
kmodstat
kmodunload

This service provides support for loading and unloading KEXTs.

Kernel Tracing
Provider: BSD
Clients: Mach, I/O Kit, file systems, networking, loadable modules
APIs:

#include <sys/kdebug.h>

This service provides information for performance analysis and debugging
support, as well as trace points for user processes.

Lock Management
Provider: BSD
Clients: file systems, networking, loadable modules, user processes
APIs:

#include <sys/lock.h>

BSD, file systems, and networking code should use this service for management of
locking operations. Note that this API is quite different from the one defined in
osfmk/kern/lock.h.

Mach Interface Generator (MIG)
Provider: Mach
Clients: All kernel components, user processes (Project Builder)

72 Available Services

C H A P T E R 9

Kernel Services

MIG is used to specify IPC formats that are valid on a given port. It is used mostly
in Remote Procedure Call (RPC) situations, but supports other forms of
communication as well. MIG also provides a set of runtime services for dispatching
incoming communications to the appropriate handler. Project Builder has special
rules and targets for generating stubs for both sides of the MIG interface.

mbuf Management
Provider: Networking
Clients: NKEs (third-party), file systems
APIs:

#include <sys/mbuf.h>

These services provide support for the mbuf data structure, which is used to manage
I/O for network devices.

Memory and Address Space Management
Provider: Mach
Clients: All kernel components, user processes

Specific services include virtual memory management, address space allocation,
page read and write, external memory managers (EMMI), and memory objects.

Port Right Management
Provider: Mach
Clients: All kernel components

Port right ownership is the fundamental security mechanism within Mach. Specific
services include creation and destruction, reference management, copying, explicit
insertion and removal from other tasks, passing via IPC, grouping of rights into
sets, and requesting asynchronous notifications about changes in a port’s status. See
also: “Task and Thread Management” (page 75), “Interprocess Communication
(IPC)” (page 70).

C H A P T E R 9

Kernel Services

Available Services 73

Processor Management
Provider: Mach
Clients: All kernel components

These services provide low-level hardware support, including processor start,
processor stop, and power management.

Registry
Provider: I/O Kit
Clients: I/O Kit family APIs, user processes.
APIs:

#include <IOKit/IORegistryEntry.h>

These services support publishing of I/O Kit devices or services and device
information and relationships.

Queue Management
Provider: BSD
Clients: file systems, networking, loadable modules, user processes
APIs:

#include <sys/queue.h>

BSD, file systems, and networking code use this service for queue management. It
provides support for singly and doubly linked lists and queues. Note that there are
subtle differences between this API and the queues found in osfmk/kern/queue.h.

Socket Management
Provider: Networking
Clients: NKEs (third-party), file systems, user processes
APIs:

#include <sys/socket.h>
#include <sys/socketvar.h>

These services provide support for the management of sockets.

74 Available Services

C H A P T E R 9

Kernel Services

Network Kernel Extension Support
Provider: Networking
Clients: NKEs (third-party)
APIs:

#include <net/kext_net.h>

These services provide general support for network kernel extensions.

Scheduling
Provider: Mach
Clients: BSD

Specific services include priority-based thread scheduling, preemption, and
processor resource allocation, based on the following policies: time-sharing,
round-robin, and FIFO fixed priority.

Synchronization Primitives (Low Level)
Provider: Mach
Clients: All kernel components, IPC services for exporting to user space.

This Mach service provides low-level implementation support for basic
asynchronous primitives (wait queues, semaphores) as well as basic locking
primitives (machine-specific locks, spin locks, mutexes, shared/exclusive
read/write locks).

Synchronization Primitives
Provider: BSD
Clients: File systems, Networking, loadable modules, user processes
APIs:

#include <sys/proc.h>
#include <machine/spl.h>

This BSD service provides higher level support for sleep() and wakeup() calls as
well as SPLs.

C H A P T E R 9

Kernel Services

Available Services 75

sysctl
Provider: BSD
Clients: File systems, networking, loadable modules
APIs:

#include <sys/sysctl.h>

This service provides a formalized interface for kernel global manipulation and
tuning.

Task and Thread Management
Provider: Mach
Clients: BSD

This service provides the underlying implementation for BSD process management;
a process is based on one Mach task and one or more Mach threads. A task is the
unit of resource ownership. A thread is an independently schedulable execution
path.

Timing Services
Provider: Mach
Clients: BSD, user processes

The kernel provides several different timing services to user processes. Timing
services support profiling, statistics gathering, and various types of timers, as well
as current date and time-of-day functionality.

VFS Infrastructure
Provider: BSD
Clients: file system

76 Available Services

C H A P T E R 9

Kernel Services

APIs:
#include <sys/buf.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/vnode_if.h>
#include <vfs/vfs_support.h>

This service provides VFS management routines and default library routines in
support of virtual file system functionality.

Vnode Management
Provider: BSD
Clients: file system
APIs:

#include <sys/vnode.h>

This service provides allocation, referencing, and serialization functionality in
support of vnode management.

Zone allocator
Provider: Mach
Clients: BSD, networking

This service provides support for efficient kernel memory allocation.

77

10 Glossary

abstraction The process of picking out
(abstracting) common features of objects and
procedures. In programming, an abstraction
provides the API that all instances of a thing
conform to; the abstraction defines shared
features. In the I/O Kit, abstractions take the
form of classes.

address space The address space of a
process describes the ranges of memory
(both physical and virtual) that it uses while
running. In Mac OS X, processes do not share
address space.

anonymous memory Virtual memory
backed by the default pager to swap files,
rather than by a persistent object.
Anonymous memory is zero-initialized and
exists only for the life of the task. See also
default pager, task

API (Application programming
interface) The interface (calling
conventions) by which an application
program accesses operating system services.

Apple Public Source License Apple’s
Open Source license, available at
http://www.apple.com/publicsource. Darwin
is distributed under this license. See also
Open Source

AppleTalk A suite of network protocols
that is standard on Macintosh computers.

ASCII (American Standard Code for
Information Interchange) A 7-bit character
set (commonly represented using 8 bits) that
defines 128 unique character codes. See also
Unicode

BSD (Berkeley Software
Distribution. Formerly known as the
Berkeley version of UNIX, BSD is now
simply called the BSD operating system. The
BSD portion of the Mac OS X kernel is based
on FreeBSD, a version of BSD.

BSD media shim Specifically
IOMediaBSDClient; part of the I/O Kit storage
family. The BSD media shim provides access
to all storage devices being managed by I/O
Kit drivers via traditional BSD device nodes.

bundle A packaging mechanism
(implemented as a directory) that stores
executable code and the software resources
related to that code. Applications, plug-ins,
and frameworks represent types of bundles.
Except for frameworks, bundles are file
packages, presented by the Finder as a single
file.

Carbon An application environment in
Mac OS X that features a set of programming
interfaces derived from earlier versions of the
Mac OS. The Carbon APIs have been
modified to work properly with Mac OS X,
especially with the foundation of the
operating system, the kernel environment.

G L O S S A R Y

78

Carbon applications can run on Mac OS X,
Mac OS 9, and all versions of Mac OS 8 later
than Mac OS 8.1.

Classic An application environment in Mac
OS X that lets users run non-Carbon legacy
Mac OS software. It supports programs built
for both Power PC and 68K processor
architectures and is fully integrated with the
Finder and the other application
environments.

clock An object used to abstract time in
Mach.

Cocoa An advanced object-oriented
development platform on Mac OS X. Cocoa is
a set of frameworks with programming
interfaces in both Java and Objective-C. It is
based on the integration of OPENSTEP,
Apple technologies, and Java.

condition variable A type of variable
provided by the POSIX threads functions to
help synchronize the threads in a task.

console A special window that displays
system log messages, as well as output
written to the standard error and standard
output streams by applications launched
from the Finder. Also, an application by the
same name that displays this information.

control port In Mach, access to the control
port allows an object to be manipulated. Also
called the privileged port. See also port;
name port

cooperative multitasking A multitasking
environment in which a running program
can receive processing time only if other
programs allow it; each application must

give up control of the processor
cooperatively in order to allow others to run.
Mac OS 8 and 9 are cooperative multitasking
environments. See also preemptive
multitasking

copy-on-write A delayed copy
optimization used in Mach. The object to be
copied is write protected instead, and
physically copied only if some thread tries to
write to it. See also thread.

Darwin An Open Source project that
includes the Darwin kernel, the BSD
commands and C libraries, and several
additional features.The Darwin kernel is
synonymous with the Mac OS X kernel.

daemon A long-lived process, usually
without a visible user interface, that performs
a system-related service. Daemons are
usually spawned automatically by the
system and may either live forever or be
regenerated at intervals.

default pager In Mach, one of two built-in
pagers. The default pager handles
nonpersistent (anonymous) memory. See
also anonymous memory; vnode pager;
pager

demand paging An operating-system
facility that brings pages of data from disk
into physical memory only as they are
needed.

DLIL (Data Link Interface Layer) The part
of the Mac OS X kernel’s networking
infrastructure that provides the interface
between protocol handling and network

G L O S S A R Y

79

device drivers in the I/O Kit. A
generalization of the BSD “ifnet”
architecture.

DMA Direct memory access; a means of
transferring data between host memory and
a peripheral device without involving the
host processor.

 driver Software that deals with getting
data to and from a device, as well as control
of that device. In the I/O Kit, an object that
manages a piece of hardware (a device),
implementing the appropriate I/O Kit
abstractions for that device. See also object

DVD (Digital Versatile Disc) Originally,
Digital Video Disc. An optical storage
medium that provides greater capacity and
bandwidth than CD-ROM; DVDs are
frequently used for multimedia as well as
data storage.

dyld (Dynamic link editor) A utility that
allows programs to dynamically load (and
link to) needed functions.

EMMI (External Memory Management
Interface) Mach’s interface to memory
objects that allows their contents to be
contributed by user-mode tasks. See also
external pager

Ethernet A high-speed local area network
technology.

exception An interruption to the normal
flow of program control, caused by the
program itself or by executing an illegal
instruction.

exception port A Mach port on which a
task or thread receives messages when
exceptions occur.

external pager A module that manages the
relationship between virtual memory and its
backing store. External pagers are clients of
Mach’s EMMI. They may be either in the
kernel or in user space. The built-in pagers in
Mac OS X are the default pager and the
vnode pager. See also EMMI

family In the I/O Kit, a family defines a
collection of software abstractions that are
common to all devices of a particular
category (for example, PCI, storage, USB).
Families provide functionality and services
to drivers. See also driver

FAT (File Allocation Table) A data
structure used in the MS-DOS file system.
Also synonymous with the file system that
uses it. The FAT file system is also used as
part of Microsoft Windows and has been
adopted for use inside devices such as digital
cameras.

fat files Mach-O files containing object
code for more than one machine architecture.

FIFO (First-in First-out) A data processing
scheme in which data is read in the order in
which it was written, processes are run in the
order in which they were scheduled, and so
forth.

file descriptor A per-process unique,
nonnegative integer used to identify an open
file (or socket).

G L O S S A R Y

80

firewall Software (or a computer running
such software) that prevents unauthorized
access to a network by users outside of the
network.

fixed-priority policy In Mach, a scheduling
policy in which threads execute for a certain
quantum of time, and then are put at the end
of the queue of threads of equal priority.

fork A stream of data that can be opened
and accessed individually under a common
filename. The Macintosh Standard and
Extended file systems store a separate “data”
fork and a “resource” fork as part of every
file; data in each fork can be accessed and
manipulated independently of the other.
Also, in BSD, fork is a system call that creates
a new process.

framework A basic structure that holds the
parts of some thing together. In Mac OS X,
specifically, a bundle containing a dynamic
shared library and associated resources,
including image files, header files, and
documentation. Also used to describe the
barrier between user and system functions.

FreeBSD A variant of the BSD operating
system. See http://www.freebsd.org for
details.

GDB (GNU Debugger) GDB is a powerful,
source-level debugger with a command line
interface. GDB is a popular Open Source
debugger and is included with the Mac OS X
developer tools.

host The computer that’s running (is host
to) a particular program. The term is usually
used to refer to a computer on a network.

host processor The microprocessor on
which an application program resides. When
an application is running, the host processor
may call other, peripheral microprocessors,
such as a digital signal processor, to perform
specialized operations.

HFS (Hierarchical file system) The Mac
OS Standard filesystem format, used to
represent a collection of files as a hierarchy of
directories (folders), each of which may
contain either files or folders themselves.

HFS+ (Hierarchical file system plus) The
Mac OS Extended file system format. This
filesystem format was introduced as part of
Mac OS 8.1, adding support for filenames
longer than 31 characters, Unicode
representation of file and directory names,
and efficient operation on very large disks.

IDE (Interactive development environment
or integrated development
environment) An application or set of tools
that allows a programmer to write, compile,
edit, and perhaps test and debug within an
integrated, interactive environment.

inheritance attribute In Mach, a value
indicating the degree to which a parent
process and its child process share the parent
process’s address space. A memory page can
be inherited copy-on-write, shared, or not at
all.

in-line data Data that’s included directly in
a Mach message, as opposed to referred to by
a pointer. See also out-of-line data

G L O S S A R Y

81

I/O (Input/Output) The sending and
retrieving of information into the memory of
a program, usually to and from a file or a
peripheral device.

I/O Kit Apple’s object-oriented I/O
development model. The I/O Kit provides a
framework for simplified driver
development, supporting many families of
devices. See also family.

Info Plist See Information property list

information property list A special form of
property list with predefined keys for
specifying basic bundle attributes and
information of interest, such as supported
document types and offered services. See
also bundle; property list

IPC (Inter-process communication) The
transfer of information between processes.

Kerberos An authentication system based
on symmetric key cryptography. Used in
MIT Project Athena and adopted by the Open
Software Foundation (OSF).

kernel The complete Mac OS X core
operating system environment that includes
Mach, BSD, the I/O Kit, file systems, and
networking components.

kernel extension See KEXT

kernel port A Mach port whose receive
right is held by the kernel. See also task port;
thread port

KEXT (kernel extension) Kernel
extensions extend the functionality of the
kernel. The I/O Kit, File system, and

Networking components are designed to
allow and expect the creation and use of
KEXTs.

KMOD (kernel module) A file (or files) in
Mach-O format, containing the actual binary
code used by a KEXT. A KMOD is the
minimum unit of code that can be loaded into
the kernel. See also KEXT, Mach-O.

Mach The lowest level of the Mac OS X
kernel. Mach provides such basic services
and abstractions as threads, tasks, ports, IPC,
scheduling, physical and virtual address
space management, VM, and timers.

Mach-O Mach object file format. The
preferred object file format for Mac OS X.

Mach factor A measurement of how busy a
Mach-based system (such as Mac OS X) is.
Unlike a load average (as used in Linux or
BSD systems), higher Mach factors mean the
system is less busy.

Mach server A task that provides services
to clients, using a MIG-generated RPC
interface. See also MIG

main thread By default, a process has one
thread, the main thread. If a process has
multiple threads, the main thread is the first
thread in the process. A user process can use
the POSIX thread API to create other user
threads.

makefile A makefile details the files,
dependencies, and rules by which an
executable application is built or by which a
set of programs may be run.

G L O S S A R Y

82

memory-mapped files A facility that maps
virtual memory onto a physical file.
Thereafter, any access to that part of virtual
memory causes the corresponding page of
the physical file to be accessed. The contents
of the file can be changed by changing the
contents in memory.

memory object An object managed by a
pager, that represents a file (for example) in
memory. See also pager

memory protection A system of memory
management in which programs are
prevented from being able to modify or
corrupt the memory partition of another
program. Mac OS 8 and 9 do not have
memory protection; Mac OS X does.

message In Mach, a message consists of a
header and a variable-length body; some
operating-system services are invoked by
passing a message from a thread to the Mach
port representing the task that provides the
desired service.

microkernel A kernel implementing a
minimal set of abstractions. Typically,
higher-level OS services such as file systems
and device drivers are implemented in layers
above a microkernel, possibly in trusted
user-mode servers. See also monolithic
kernel

MIG (Message interface generator)) MIG
provides a procedure call interface to Mach’s
system of interprocess messaging.

monolithic kernel A kernel architecture in
which all pieces of the kernel are closely
intertwined. A monolithic kernel provides
substantial performance improvements;

however, it is difficult to evolve the
individual components independently. The
Mac OS X kernel is a hybrid of the monolithic
and microkernel models. See also
microkernel

multicast A process in which a single
packet can be addressed to multiple
recipients. Multicast is used, for example, in
streaming video, in which many megabytes
of data are sent over the network.

multihoming The ability to have multiple
network addresses in one computer. For
example, multihoming might be used to
create a system in which one address is used
to talk to hosts outside a firewall and the
other to talk to hosts inside; the computer
provides facilities for passing information
between the two.

multitasking Describes an operating
system that allows the concurrent execution
of multiple programs. Mac OS X uses
preemptive multitasking. Mac OS 8 and 9 use
cooperative multitasking.

mutex (Mutual exclusion variable) A type
of variable provided by the POSIX threads
functions to help protect critical regions in a
multiple-thread task.

name port In Mach, access to the name port
names the object. See also port; control port

name space An agreed-upon context in
which names (identifiers) can be defined.
Within a given name space, all names must
be unique.

G L O S S A R Y

83

named memory entry A handle (a port) to
a mapable object backed by a memory
manager. The object can be a region or a
memory object.

named region In Mach, a form of named
memory entry that provides a form of
memory sharing.

NAT (Network address translation) A
scheme that transforms network packets at a
gateway so network addresses that are valid
on one side of the gateway are translated into
addresses that are valid on the other side.

network A group of hosts that can directly
communicate with each other.

NFS (Network file system) An NFS file
server allows users on the network to share
files as if the files were on the user’s local
disk.

NKE (Network kernel extension) NKEs
provide a way to extend and modify the
networking infrastructure of Mac OS X
dynamically, without recompiling or
relinking the kernel. The effect is immediate
and does not require rebooting the system.

NMI (Nonmaskable interrupt) An
interrupt produced by a particular keyboard
sequence or button. It can be used to
interrupt a hung system.

notify port A Mach port on which a task
receives messages from the kernel advising it
of changes in port access rights and of the
status of messages it has sent.

nonsimple message In Mach, a message
that contains either a reference to a port or a
pointer to data. See also simple message.

nub An I/O Kit object that represents a
device or logical service. Each nub provides
access to the device or service it represents,
and provides such services as matching,
arbitration, and power management. It is
most common that a driver publishes one
nub for each individual device or service it
controls; it is possible for a driver that vends
only a single device or service to act as its
own nub.

NVRAM (Nonvolatile RAM) RAM
storage that retains its state even when the
power is off. See also RAM

object In object-oriented programming, an
instance of a class.

OHCI (Open Host Controller
Interface) The register-level standard that
is used by most USB controller chips.

Open Transport A communications
architecture for implementing network
protocols and other communication features
on computers running Mac OS. Open
Transport provides a set of programming
interfaces that supports, among other things,
both the AppleTalk and TCP/IP protocols.

Open Source A definition of software that
includes freely available access to source
code, redistribution, modification, and
derived works. The full definition is available
at http://www.opensource.org.

G L O S S A R Y

84

out-of-line data Data that’s passed by
reference in a Mach message, as opposed to
being included in the message. See also
in-line data.

packet An individual piece of information
sent on a network.

page The unit of measurement used to
divide memory.

pager A module responsible for providing
the data for the pages of a memory object. See
also default pager, vnode pager.

panic An unrecoverable system failure
detected by the kernel.

physical address An address to which a
hardware device, such as a memory chip, can
directly respond. Programs, including the
Mach kernel, use virtual addresses that are
translated to physical addresses by mapping
hardware controlled by the Mach kernel.

PEF (Preferred Executable Format) The
format of executable files used for
applications and shared libraries in Mac OS 8
and 9; supported in Mac OS X. See also
Mach-O (the preferred format for Mac OS X).

POSIX (Portable Operating System
Interface) An operating system interface
standardization effort supported by
ISO/IEC, IEEE, and The Open Group.

port In Mach, a secure unidirectional
channel for communication between tasks
running on a single system. In IP transport
protocols, an integer identifier used to select
a receiver for an incoming packet, or to
specify the sender of an outgoing packet.

port name In Mach, an integer index into a
port name space; a port right is specified by
its port name. See also port rights.

port rights In Mach, the ability to send to or
receive from a Mach port. Also known as
port access rights.

port set In Mach, a set of zero or more Mach
ports. A thread can receive messages sent to
any of the ports contained in a port set by
specifying the port set as a parameter to
msg_receive().

preemptive multitasking A type of
multitasking in which the operating system
can interrupt a currently running task in
order to run another task, as needed. See also
cooperative multitasking.

preemption The act of interrupting a
currently running program in order to give
time to another task.

priority In Mach scheduling, a number
between 0 and 127 that indicates how likely a
thread is to run. The higher the thread’s
priority, the more likely the thread is to run.
See also scheduling policy.

process A BSD abstraction for a running
program. A process’ resources include a
virtual address space, threads, and file
descriptors. In Mac OS X, a process is based
on one Mach task and one or more Mach
threads.

process identifier, or process ID A number
that uniquely identifies a process.

protected memory See memory protection.

G L O S S A R Y

85

protocol handler A network module that
extracts data from input packets (giving the
data to interested programs) and inserts data
into output packets (giving the output packet
to the appropriate network device driver).

programmed I/O I/O in which the CPU
accomplishes data transfer with explicit load
and store instructions to device registers, as
opposed to DMA. Byte-by-byte or
word-by-word data transfer to a device. Also
known as direct I/O. See also DMA.

property list A textual way to represent
data. Elements of the property list represent
data of certain types, such as arrays,
dictionaries, and strings. System routines
allow programs to read property lists into
memory and convert the textual data
representation into “real” data. See also
information property list.

Pthreads POSIX threads implementation.
See also POSIX, threads

quantum The fixed amount of time a
thread or process can run before being
preempted.

RAM (Random-access memory) Memory
that a microprocessor can either read or write
to.

real-time Used to describe a system that
must guarantee a response to an external
event within a given time. Real-time support
is important for applications such as
multimedia.

receive rights In Mach, the ability to
receive messages on a Mach port. Only one
task at a time can have receive rights for any
one port. See also send rights.

reply port A Mach port associated with a
thread that is used in remote procedure calls.

ROM (Read-only memory) , that is,
memory that cannot be written to.

root An administrative account with
special privileges. For example, only the root
account can load kernel extensions. Also, the
root file system (the root of the file system
inverted tree).

RPC (Remote Procedure Call) In Mach,
RPCs are implemented using MIG-generated
messages.

SCSI Small Computer Systems Interface. A
standard connector and communications
protocol used for connecting devices such as
disk drives to computers.

scheduling The determination of when
each process or task runs, including
assignment of start times.

scheduling policy In Mach, a thread’s
scheduling policy determines how the
thread’s priority is set and under what
circumstances the thread runs. See also
priority.

send rights In Mach, the ability to send
messages to a Mach port. Many tasks can
have send rights for the same port. See also
receive rights

G L O S S A R Y

86

simple message In Mach, a message that
contains neither references to ports nor
pointers to data. See also nonsimple
message.

SMP (Symmetric Multi-processing) An
operating system architecture in which two
or more processors are managed by one
kernel, sharing the same memory, having
equal access to I/O devices, and in which any
task, including kernel tasks, can run on any
processor.

SPL Set Priority Level. A request that sets
the current processor priority level, the level
used by the kernel to control interrupt
delivery to the CPU.

socket In BSD-derived systems, a socket
refers to different entities in user and kernel
space. For a user process, a socket is a file
descriptor that has been allocated using
socket(2). In the kernel, a socket is the data
structure allocated when the kernel’s
implementation of the socket(2) call is made.
In AppleTalk protocols, a socket serves the
same purpose as a port in IP transport
protocols.

stackable file system A filesystem layer
that has as its input the standard VFS file
system interfaces and that may call other
filesystem layers beneath it to implement fil
esystem operations. All stackable file systems
support the same interface and can be
layered on top of one another to add unique
functionality.

task A Mach abstraction, consisting of a
virtual address space and a port name space.
A task itself performs no computation;
rather, it is the framework in which threads
run. See also threads

task port A kernel port that represents a
task and is used to manipulate that task. See
also kernel port, thread port.

TCP/IP Transmission Control
Protocol/Internet Protocol. An industry
standard protocol used to deliver messages
between computers over the network.
TCP/IP is the primary networking protocol
used in Mac OS X.

thread In Mach, the unit of CPU utilization.
A thread consists of a program counter, a set
of registers, and a stack pointer. See also task.

thread port A kernel port that represents a
thread and is used to manipulate that thread.
See also kernel port, task port.

thread-safe Used to describe code that can
be executed safely by several threads
simultaneously.

time-sharing policy In Mach, a scheduling
policy in which a thread’s priority is raised
and lowered to balance its resource
consumption against other timesharing
threads

UFS (UNIX File system) An industry
standard filesystem format used in UNIXand
similar operating systems such as BSD. UFS
in Mac OS X is a derivative 4.4BSD UFS.
Specifically, its disk layout is not compatible
with other BSD UFS implementations.

G L O S S A R Y

87

UDF (Universal Disk Format.) The file
system format used in DVD disks.

Unicode A 16-bit character set that defines
unique character codes for characters in a
wide range of languages. Unlike ASCII,
which defines 128 distinct characters
typically represented in 8 bits, there are as
many as 65,536 distinct Unicode characters
that represent the unique characters used in
most foreign languages.

USB Universal Serial Bus. A multiplatform
bus standard that can support up to 127
peripheral devices, including printers, digital
cameras, keyboards and mice, and storage
devices.

user client In I/O Kit, a means of allowing
user-level code to communicate across the
user-kernel address space boundary, as, for
example, in a printer or scanner application.

UTF-8 (Unicode Transformation
Format 8) A format used to represent a
sequence of 16-bit Unicode characters with
an equivalent sequence of 8-bit characters,
none of which are zero. This sequence of
characters can be represented using an
ordinary C language string.

virtual address An address that is usable
by software. Each task has its own range of
virtual addresses, beginning at address zero.
The Mach operating system makes the CPU
hardware map these addresses onto physical
memory only when necessary, using disk
memory at other times. See also physical
address.

virtual memory The use of a disk partition
or a file on disk to provide the same facilities
usually provided by RAM. The virtual
memory provides 32 bit (minimum)
protected address space for each task and
facilitates efficient sharing of that address
space.

VFS Virtual File System. A set of standard
internal file system interfaces and utilities
that facilitate support for additional file
systems. VFS provides an infrastructure for
file systems built in the kernel.

VM See virtual memory.

vnode A data structure containing
information about a file.

vnode pager In Mach, one of two built-in
pagers. The vnode pager maps files into
memory objects. See also default pager;
pager

work loop The main loop of an application
or module that waits repeatedly for incoming
events and dispatches them.

XML (Extensible Markup Language.) An
“extremely simple” dialect of SGML
(Standard Generalized Markup Language),
XML provides a metalanguage containing
rules for constructing specialized markup
languages. XML users can create their own
tags, making XML very flexible.

89

11 Bibliography

Apple Mac OS X Publications

Hello Kernel: Creating a Kernel Extension With Project Builder (tutorial).

Hello IOKit: Creating a Device Driver With Project Builder (tutorial).

Inside Mac OS X: Network Kernel Extensions.

Inside Mac OS X: System Overview.

General UNIX and Open Source Resources

A Quarter Century of Unix. Peter H. Salus. Addison-Wesley, 1994.ISBN
0-201-54777-5.

Berkeley Software Distribution. CSRG, UC Berkeley. USENIX and O’Reilly, 1994. ISBN
1-56592-082-1.

The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Eric S. Raymond. O’Reilly & Associates, 1999. ISBN 1-56592-724-9.

The New Hacker’s Dictionary. 3rd. Ed., Eric S. Raymond. MIT Press, 1996. ISBN
0-262-68092-0.

Open Sources: Voices from the Open Source Revolution. Edited by Chris DiBona, Sam
Ockman & Mark Stone. O’Reilly & Associates, 1999. ISBN 1-56592-582-3.

90

B I B L I O G R A P H Y

Proceedings of the First Conference on Freely Redistributable Software. Free Software
Foundation. FSF, 1996. ISBN 1-882114-47-7.

The UNIX Desk Reference: The hu.man Pages. Peter Dyson. Sybex, 1996. ISBN
0-7821-1658-2.

The UNIX Programming Environment. Brian W. Kernighan, Rob Pike. Prentice Hall,
1984. ISBN 0-13-937681-X; Osborne, 1996. ISBN 0-07-882189-4.

Internals

Advanced Topics in UNIX: Processes, Files, & Systems. Ronald J. Leach. Wiley, 1996.
ISBN 1-57176-159-4.

The Complete FreeBSD. Greg Lehey, Walnut Creek CDROM Books, 1999. ISBN
1-57176-246-9.

The Design and Implementation of the 4.4BSD UNIX Operating System. Marshall Kirk
McKusick, et al. Addison-Wesley, 1996. ISBN 0-201-54979-4.

The Design of the UNIX Operating System. Maurice J. Bach. Prentice Hall, 1986. ISBN
0-13-201799-7.

Linux Kernel Internals. Michael Beck, et al. Addison-Wesley, 1996. ISBN
0-201-87741-4.

Lions’ Commentary on UNIX 6th Edition with Source Code. John Lions. Peer-to-Peer,
1996. ISBN 1-57398-013-7.

Panic!: UNIX System Crash Dump Analysis. Chris Drake, Kimberly Brown. Prentice
Hall, 1995. ISBN 0-13-149386-8.

UNIX Internals: The New Frontiers. Uresh Vahalia. Prentice-Hall, 1995. ISBN
0-13-101908-2.

UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for
Kernel Programmers. Curt Schimmel. Addison-Wesley, 1994. ISBN 0-201-63338-8.

Optimizing PowerPC Code. Gary Kacmarcik. Addison-Wesley Publishing Company,
1995. ISBN 0-201-40839-2.

B I B L I O G R A P H Y

91

Berkeley Software Architecture Manual 4.4BSD Edition. William Joy, Robert Fabry,
Samuel Leffler, M. Kirk McKusick, Michael Karels. Computer Systems Research
Group, Computer Science Division, Department of Electrical Engineering and
Computer Science, University of California, Berkeley.

Mach

CMU Computer Science: A 25th Anniversary Commemorative. Richard F. Rashid, Ed.
ACM Press, 1991. ISBN 0-201-52899-1.

Load Distribution: the Implementation of the Mach Microkernal. Dejan S. Milojicic.
Vieweg, 1994. ISBN 3-528-05424-7.

Programming under Mach. Boykin, et al. Addison-Wesley, 1993. ISBN 0-201-52739-1.

Mach Workshop Proceedings. USENIX Association. October, 1990.

Mach Symposium Proceedings. USENIX Association. November, 1991.

Mach III Symposium Proceedings. USENIX Association. April, 1993, ISBN
1-880446-49-9.

Mach 3 Documentation Series. Open Group Research Institute (RI):

Final Draft Specifications OSF/1 1.3 Engineering Release. RI. May 1993.

OSF Mach Final Draft Kernel Principles. RI. May, 1993.

OSF Mach Final Draft Kernel Interfaces. RI. May, 1993.

OSF Mach Final Draft Server Writer’s Guide. RI. May, 1993.

OSF Mach Final Draft Server Library Interfaces, RI, May, 1993.

Research Institute Microkernel Series. Open Group Research Institute (RI):

Operating Systems Collected Papers. Volume I. RI. March, 1993.

Operating Systems Collected Papers. Volume II. RI. October,1993.

Operating Systems Collected Papers. Volume III. RI. April, 1994.

Operating Systems Collected Papers. Volume IV. RI. October, 1995.

 Mach: A New Kernel Foundation for UNIX Development. Proceedings of the Summer
1986 USENIX Conference. Atlanta, GA., http://www.usenix.org.

92

B I B L I O G R A P H Y

UNIX as an Application Program. Proceedings of the Summer 1990 USENIX
Conference. Anaheim, CA., http://www.usenix.org.

OSF RI papers (Spec ‘93):

OSF Mach Final Draft Kernel Interfaces.

OSF Mach Final Draft Kernel Principles.

OSF Mach Final Draft Server Library Interfaces.

OSF Mach Final Draft Server Writer's Guide.

OSF Mach Kernel Interface Changes.

 OSF RI papers (Spec ‘94):

OSF RI 1994 Mach Kernel Interfaces Draft.

OSF RI 1994 Mach Kernel Interfaces Draft (Part A).

OSF RI 1994 Mach Kernel Interfaces Draft (Part B).

OSF RI 1994 Mach Kernel Interfaces Draft (Part C).

 OSF RI papers (miscellaneous):

Debugging an object oriented system using the Mach interface.

Unix File Access and Caching in a Multicomputer Environment.

Untyped MIG: The Protocol.

Untyped MIG: What Has Changed and Migration Guide.

Towards a World-Wide Civilization of Objects.

A Preemptible Mach Kernel.

A Trusted, Scalable, Real-Time Operating System Environment.

Mach Scheduling Framework.

B I B L I O G R A P H Y

93

Networking

UNIX Network Programming. Volume 1, Networking APIs: Sockets and XTI.
W. Richard Stevens. Prentice Hall, 1998, ISBN 0-13-490012-X.

UNIX Network Programming. Volume 2, Interprocess Communications. W. Richard
Stevens. Prentice Hall, 1998. ISBN 0-13-081081-9.

TCP/IP Illustrated. Volume 1, The Protocols. W. Richard Stevens. Addison-Wesley,
1994. ISBN 0-201-63346-9.

TCP/IP Illustrated. Volume 2, The Implementation. W. Richard Stevens.
Addison-Wesley, 1995. ISBN 0-201-63354-X.

TCP/IP Illustrated. Volume 3, TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocols. W. Richard Stevens. Addison-Wesley, 1996. ISBN 0-201-63495-3.

Operating Systems

Advanced Computer Architecture: Parallelism, Scalability, Programmability. Kai Hwang.
McGraw-Hill, 1993. ISBN 0-07-031622-8.

Concurrent Systems: An Integrated Approach to Operating Systems, Database, and
Distributed Systems. Jean Bacon. Addison-Wesley, 1993. ISBN 0-201-41677-8.

Distributed Operating Systems. Andrew S. Tanenbaum. Prentice Hall, 1995. ISBN
0-13-219908-4.

Distributed Operating Systems: The Logical Design. A. Goscinski. Addison-Wesley,
1991. ISBN 0-201-41704-9.

Distributed Systems, Concepts, and Designs. G. Coulouris, et al. Addison-Wesley,
1994. ISBN 0-201-62433-8.

Operating System Concepts. 4th Ed., Abraham Silberschatz, Peter Galvin.
Addison-Wesley, 1994. ISBN 0-201-50480-4.

94

B I B L I O G R A P H Y

POSIX

Information Technology-Portable Operating System Interface (POSIX): System
Application Program Interface (API) (C Language). ANSI/IEEE Std. 1003.1. 1996
Edition. ISO/IEC 9945-1: 1996. IEEE Standards Office. ISBN 1-55937-573-6.

Programming with POSIX threads. David R. Butenhof. Addison Wesley Longman,
Inc., 1997. ISBN 0-201-63392-2.

Programming

Advanced Programming in the UNIX Environment. Richard W. Stevens.
Addison-Wesley, 1992. ISBN 0-201-56317-7.

Debugging with GDB: The GNU Source-Level Debugger for GDB version 4.18. Richard
Stallman. Cygnus Support; Out of print—See http://www.redhat.com/support/
manuals/gnupro99r1/ for the online version.

Open Source Development with CVS, Karl Franz Fogel. Coriolis Group, 1999. ISBN:
1-57610-490-7.

Porting UNIX Software: From Download to Debug. Greg Lehey. O’Reilly, 1995. ISBN
1-56592-126-7.

The Standard C Library. P.J. Plauger. Prentice Hall, 1992. ISBN 0-13-131509-9.

B I B L I O G R A P H Y

95

Websites and Online Resources

Apple’s developer website (http://www.apple.com/developer) is a general repository for
developer documentation. Additionally, the following sites provide more domain-specific
information.

Apple’s Public Source projects and Darwin OS

http://www.publicsource.apple.com

The Berkeley Software Distribution (BSD)

http://www.FreeBSD.org

http://www.NetBSD.org

http://www.OpenBSD.org

BSD Networking

http://www.kohala.com/start/

CVS (Concurrent Versions System)

http://www.publicsource.apple.com/tools/cvs/cederquist

Embedded C++

http://www.caravan.net/ec2plus

GDB, GNUPro Toolkit 99r1 Documentation

http://www.redhat.com/support/manuals/gnupro99r1/

The Internet Engineering Task Force (IETF)

http://www.ietf.org

jam

http://www.perforce.com/jam/jam.html

The PowerPC CPU

http://www.motorola.com/SPS/PowerPC/

96

B I B L I O G R A P H Y

The Single UNIX Specification Version 2

http://www.opengroup.org/onlinepubs/007908799

Stackable File Systems

http://www.isi.edu/~johnh/WORK/stacking_faq.htm

The USENIX Association; USENIX Proceedings

http://www.usenix.org

http://www.usenix.org/publications/library/

97

Index

A

address space 14, 22
AFS 56
Andrew file system See also AFS 56
anonymous memory 27
API 27
Apple Public Source License 16
Apple publications 10

System Overview 10
Apple websites 10

Apple Developer Connection 10
AppleCare Tech Info Library 11

B

BSD 15, 16, 18, 33
debugging 69
media shim 47
signals 69
system calls 46, 67

BSD Disk shim
and kernel services 68

buffer cache 37
bundles 61

C

C++ 39, 62
Carbon 15
CFM (Code Fragment Manager) 36
CFPlugin 45
Classic 15
clock 31
Cocoa 15

Computer Systems Research Group (CSRG) 33
console 62
control port 25
cooperative multitasking 14
copy-on-write 27
Core Graphics 60

D

daemons 67
Darwin 15, 39
data link 52
debugging 63

and kernel services 69, 71
using GDB 63

default pager 26
descriptors 35
devfs 47
DHCP 33
directory

/dev 47
driver 43, 45

client-provider relationship 43
dyld (dynamic link editor) 36

E

EMMI 27, 72
External Memory Management Interface See

EMMI
external pager 18

I N D E X

98

F

file system 17
stackable 20

file systems 55
and Carbon 55
and vnode 56
and VOP 56, 57
Andrew 56

firewall 19
fixed priority

FIFO 74
fixed-priority 24
FreeBSD 16, 18, 33, 37, 67

G

GDB 63

H

HFS 20, 55
HFS+ 20, 55

I

I/O Kit 16, 19, 39
and kernel services 68, 69, 73
architecture 41
drivers 43, 62
families 42, 69
nubs 43
support for imaging devices 41

internet services 33
IOMedia 47
IPC 18, 22, 25, 28

services 74
ISO 9660 20, 55

J

Java 15

K

KDK 40
Kerberos 8
kernel

abstractions 22
architecture 13, 17
environment 16
microkernel 21
monolithic 21
user space 45
wired resources 59

kernel development kit See KDK
Kernel Extension Manager 62
kernel extension See KEXT
kernel module See KMOD
kernel space 14
kernel thread 34
KEXT 20, 59

and kernel services 71
and system panic 59
as bundles 61
debugging 63
in supervisor mode 59

KMOD 61

L

Linux 8
lock sets 28
locks 30

and kernel services 71

I N D E X

99

M

Mac OS (Classic) 8
Mac OS Extended 37
Mac OS Extended Format See also HFS+
Mac OS Standard Format See also HFS
Mach 15, 17, 18, 61

IPC 46
shared memory 46
thread 34

Mach 3.0 21
Mach Interface Generator See MIG
Mach IPC 67
Mach messaging 14
Mach-O 36
main thread 34
memory 33

anonymous 27
management 16, 26, 35
object 22
protection 13, 33
shared 67
sharing 14
virtual 40

memory mapped device 36
message queue 25, 26, 28, 29
messaging 21

APIs 27
microkernel 21
MIG 22, 72
MkLinux 16
multicast 19
multi-homing 19
multiuser 33
mutex 30

N

name port 25
name space 52

as Creator 52
as Type 52

named
memory entries 27
regions 27

NAT 19
Network Kernel Extension See NKE
network kernel extension See NKE
networking 17, 19
NeXT 16
NFS 20, 33, 55
NIS 33
NKE 16, 49

and protocol stacks 49
notifications 21, 28, 30
nub 43

O

object-oriented frameworks 39
OHCI 45
Open Source 8, 15

P

packets 51
pager 26

default 26
vnode 26

PEF 36
performance, kernel services for 71
plug and play 19
plug-in 20
plug-in architectures 60

Core Graphics 60
QuickTime 60

port 22, 25
control 25
name 25, 26
name space 26
privileged 25
receive rights 23
right name space 22

I N D E X

100

port (continued)
rights 25
set 26

POSIX 18, 23, 34
semaphores 70
shared memory 70

power management 19
PPP 33
preemption 13
preemptive multitasking 14, 33
privileged port 25
process 14
Project Builder 62
protocol stack 49
Pthread 23
Pthreads 18

Q

queue
management 73
of messages 26

QuickTime 60

R

real-time 18, 21
routing 19
RPC 18, 28, 29, 30

S

semaphore 28, 30
shared libraries 14, 27
shared memory 67
shared memory region 21
signals 35
SLIP 33
SMP 18, 21, 34

socket
management of 73
structure 50

SPL 74
synchronization 21

T

task 22, 24
TCP/IP 33
Terminal 62
thread 21, 24

kernel 34
Mach 34
main 34
migration 30

time 22
timesharing 24
timing, and kernel services 75

U

UFS 20, 55
Unified Buffer Cache 37
University of California at Berkeley 33
user 45
user ID 18
user space 14, 45
user thread 59
UTF-8 20

V

VFS 20, 55, 57
and kernel services 76

virtual 33
virtual address space 21, 22
Virtual File System See also VFS
Virtual File System See VFS
virtual machine 34

I N D E X

101

virtual memory 33, 40
vnode pager 26
VOP 57

W, X, Y, Z

Windows NT 8
Windows NT File system See also NTFS
work loops 26

	Kernel Environment
	Contents
	About This Book
	Audience Profile
	Road Map
	Other Apple Publications
	Information on the Web

	Kernel Architecture
	Darwin
	Architecture
	Mach
	BSD
	I/O Kit

	Networking
	File Systems

	Kernel Extensions

	Mach
	Mach Kernel Abstractions
	Tasks and Threads
	Ports, Port Rights, Port Sets, and Port Name Spaces
	Memory Management
	Task to Task Communication (IPC)
	IPC Transactions and Event Dispatching
	Message Queues
	Semaphores
	Notifications
	Locks
	Remote Procedure Calls (RPCs)

	Time Management

	BSD
	BSD Facilities
	Differences between Mac OS X and BSD
	For Further Reading

	Device Drivers and the I/O Kit
	Redesigning the I/O Model
	I/O Kit Architecture
	Families
	Drivers
	Nubs
	Connection Example

	Accessing Kernel APIs from User Space
	User Client Access
	BSD Media Shim

	Networking and Network Kernel Extensions
	Review of 4.4BSD Network Architecture
	NKE Types
	Modifications to 4.4BSD Networking Architecture

	File Systems and VFS Stacks
	Working With the File System
	A Politically Correct Example

	Extending the Kernel
	KEXT Implementation
	KMOD Dependencies
	Building and Testing Your KEXT
	Debugging Your KEXT
	Installed KEXTs

	Kernel Services
	Available Services
	BSD Media Shim
	Device Driver Management
	Events
	Exceptions, Traps
	Families
	File Descriptor Management
	Host Manipulation and Inquiry
	Interprocess Communication (IPC)
	Kernel Loadable Module Support
	Kernel Tracing
	Lock Management
	Mach Interface Generator (MIG)
	mbuf Management
	Memory and Address Space Management
	Port Right Management
	Processor Management
	Registry
	Queue Management
	Socket Management
	Network Kernel Extension Support
	Scheduling
	Synchronization Primitives (Low Level)
	Synchronization Primitives
	sysctl
	Task and Thread Management
	Timing Services
	VFS Infrastructure
	Vnode Management
	Zone allocator

	Glossary
	Bibliography
	Index

