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C H A P T E R  1  

 

1 About This Book

 

The purpose of this book is to provide fundamental high-level information about 
the Mac OS X core operating-system architecture. It also provides background for 
system programmers and developers of device drivers, file systems, and network 
extensions. The book concentrates on those areas where Mac OS X system 
architecture differs from other, similar operating systems.

Therefore, this book does not delve deeply into the specific 

 

APIs

 

 or programmatic 
use of the individual components of the Mac OS X core operating system, 
collectively known as the 

 

kernel

 

. These components include 

 

Mach

 

, 

 

BSD

 

, the 

 

I/O 
Kit

 

, networking, and the file system. To learn more about how to program for these 
components, you should see the specific documentation for each of them.

 

Audience Profile

 

This book has a wide and diverse audience—specifically, the set of potential system 
software developers for Mac OS X, including the following sorts of developers:

 

�

 

Device-driver writers. 

 

 Device-driver writers make up the largest portion of the 
audience. You will be some of the first developers to start writing code for Mac 
OS X. Most device-driver writers will have come from one of the following 
platform backgrounds:

 

�

 

Generic device drivers (third-party solutions). 

 

Your company writes 
drivers for many operating systems—Mac OS, Microsoft Windows, Linux, 
and so forth. You’d like to know how writing for Mac OS X will be different 
(and how it will be similar).
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�

 

UNIX platforms and variants of UNIX platforms such as FreeBSD, Linux, 
Solaris, and others.

 

You’ve been writing drivers for platforms such as Linux 
and FreeBSD. You want to know how to modify your code (or change your 
habits) when writing for Mac OS X. You may have certain preconceived 
notions about writing device drivers. The kernel environment model in Mac 
OS X differs in several respects from what you are used to; you’ll need to 
understand those differences.

 

�

 

Windows NT.

 

You have been writing for the Windows NT platform. Now, 
you have decided to broaden your scope. You need to know how to write for 
Mac OS X.

 

�

 

Mac OS (Classic).

 

You have been writing drivers for Mac OS for a long time 
and you know everything there is to know about Mac OS 8 and 9. However, 
Mac OS X is different. You need to know how to modify your code (or change 
your habits) when porting to Mac OS X.

 

�

 

Network-extension writers.

 

You need to know how the networking subsystem 
fits in with the rest of the core operating system. You come from a platform 
background similar to the device-driver writers.

 

�

 

File-system writers.

 

You want to support a file system such as AFS or NTFS. You 
need to understand how to fit your code into Mac OS X.

 

�

 

Developers of software requiring very low-level access to file-system data.

 

 
You are writing software that needs low-level access to the file system, 
applications such as on-the-fly compression, encryption, and virus checking. 
You need to understand how to write Virtual File System stacks to add value on 
top of Mac OS X.

 

�

 

System programmers familiar with BSD, Linux, and similar operating 
systems.

 

As a system programmer, you’re wondering what Mac OS X has to 
offer you. This book addresses the differences between Mac OS X and the 
“standard” BSD and Mach 3.0 implementations.

 

�

 

Customers with special requirements.

 

Because the Mac OS X kernel technology 
is 

 

Open Source

 

, some developers will be planning to make changes to the 
underlying operating system in order to meet special requirements at their sites 
(or example, a university customer may wish to add 

 

Kerberos

 

 support). This 
book tells you how the parts of the Mac OS X kernel fit together and interact.

 

�

 

Applications developers, students and others.

 

 You’re not a system 
programmer, but you’re interested in how Mac OS X is put together. You may 
already be familiar with BSD, Linux, or other UNIX variants and possibly 
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Windows NT as well. Although you don’t expect to need to know a great deal 
about the kernel environment, you are nonetheless interested in some details of 
memory allocation, process management, and the like.

 

Road Map

 

The goal of this book is to describe the underlying global concepts of the core 
operating-system development environment. That is, it describes shared concepts 
that are not specific to any one of the primary subsystems: Mach, the I/O Kit, BSD, 
file systems, or networking. All concepts should be applicable to each of these 
subsystems and are therefore useful to developers from any background (such as 
device-driver writers).

This book does not delve deeply into the specific APIs or programmatic use of the 
individual subsystems of the operating system. Each of these subsystems will be the 
subject of its own documentation.

The chapters of this book describe the kernel environment from different angles. 
Discussion of specific APIs, however, is left to more in-depth component-specific 
documentation.

The next chapter provides an overview of the Mac OS X kernel architecture. There 
follow several chapters that discuss each of the architectural components of Mac OS 
X in more detail, one chapter per component. These are followed in turn by a 
chapter that discusses extending the kernel, from a conceptual viewpoint. 

The last chapter covers available kernel services. For each service, it provides a brief 
description as well as listing which components are either a provider or a client. The 
book ends with a glossary of terms used throughout the preceding chapters as well 
as a comprehensive reference bibliography.

The glossary covers many of the terms used throughout the earlier chapters of this 
book; these terms are highlighted in bold when first used. Rather than stop and 
define each term as it appears, the definitions are all in the glossary. If a term seems 
familiar, it probably means what you think it does. If it’s unfamiliar, check the 
glossary. In any case, all readers may want to skim through the glossary, in case 
there are subtle differences between Mac OS X usage and that of other operating 
systems.
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About This Book

 

The bibliography provides numerous pointers to other reference materials. The goal 
of this book is very broad, providing a firm grounding in the fundamentals of Mac 
OS X kernel programming for developers from many backgrounds. Unfortunately, 
to do a complete and comprehensive job would fill an entire library, rather than one 
book. Instead, this book includes references to additional publications already in 
existence. Some of these are Apple publications; others are external documents. To 
make things easier, the bibliographic references are grouped into categories.

By the time you have finished this book, you should have a basic understanding of 
Mac OS X system internals and how to begin programming Mac OS X system 
software. You should also have a good idea of what you’ll need to read next.

 

Other Apple Publications

 

This book, 

 

Kernel Environment

 

, is part of a planned series, Inside Mac OS X. Be sure 
to read the first book in the series, 

 

System Overview

 

, if you are not familiar with 
Mac OS X. 

You can obtain other books in the Inside Mac OS X series (as they become available) 
using publish-on-demand. . To obtain a printed copy of an Inside Mac OS X book, 
go to the Fatbrain.com website at www.fatbrain.com.

 

Information on the Web

 

Apple maintains several websites where developers can go for general and 
technical information on Mac OS X. 

 

�

 

Apple Developer Connection: Developer Documentation 
(

 

developer.apple.com/techpubs

 

) . Features the same documentation that is 
installed on Mac OS X, except that often the documentation is more up-to-date. 
Also includes legacy documentation.
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�

 

Apple Developer Connection: Mac OS X (

 

developer.apple.com/macosx

 

) . Offers 
SDKs, release notes, product notes and news, and other resources and 
information related to Mac OS X.

 

�

 

AppleCare Tech Info Library (

 

til.info.apple.com

 

) . Contains technical articles, 
tutorials, FAQs, technical notes, and other information. 
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2 Kernel Architecture

 

Mac OS X provides many benefits to the Macintosh user and developer 
communities. These benefits include improved reliability and performance, 
enhanced networking features, an object-based system programming interface, and 
increased support for industry standards. 

In creating Mac OS X, Apple has completely re-engineered the Mac OS core 
operating system. Forming the foundation of Mac OS X is the kernel. Figure 2-1 
illustrates the Mac OS X architecture.

 

Figure 2-1

 

Mac OS X architecture

 

The kernel provides many enhancements for Mac OS X. These include 

 

preemption

 

, 

 

memory protection

 

, enhanced performance, improved networking facilities, 
support for both Macintosh (Extended and Standard) and non-Macintosh (UFS, ISO 
9660) file systems, object-oriented APIs, and more. Two of these features, 
preemption and memory protection, lead to a more robust environment. 

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment
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In Mac OS 8 and 9, applications cooperate to share processor time. Similarly, all 
applications share the memory of the computer among them. Mac OS 8 and 9 are 

 

cooperative multitasking

 

 environments. The responsiveness of all processes is 
compromised if even a single application doesn’t cooperate. On the other hand, 
real-time applications such as multimedia need to be assured of predictable, 
time-critical, behavior.

In contrast, Mac OS X is a 

 

preemptive multitasking

 

 environment. In Mac OS X, the 
kernel provides enforcement of cooperation, scheduling processes to share time 
(preemption). This supports real-time behavior in applications that require it. 

In Mac OS X, processes do not normally share memory. Instead, the kernel assigns 
each 

 

process

 

 its own 

 

address space

 

, controlling access to these address spaces. This 
control ensures that no application can inadvertently access or modify another 
application’s memory (protection). Size is not an issue; with the virtual memory 
system included in Mac OS X, each application has access to its own 4 GB memory 
address space. 

Viewed together, all applications are said to run in user space, but this does not 
imply that they share memory. User space is simply a term for the combined 
address spaces of all user-level applications. The kernel itself has its own address 
space, called kernel space. In Mac OS X, no application can modify the memory of 
the system software (the kernel). 

Although user processes do not share memory by default as in Mac OS 8 and 9, 
communication (and even memory sharing) between applications is still possible. 
For example, the kernel offers a rich set of primitives to permit some sharing of 
information among processes. These primitives include shared libraries and 
frameworks. Mach messaging provides another approach, handing memory from 
one process to another. Unlike Mac OS 8 and 9, however, memory sharing cannot 
occur without explicit action by the programmer.
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Darwin

 

The Mac OS X kernel is a key part of Apple’s 

 

Open Source

 

 initiative. The Mac OS X 
kernel is also the core of an operating system product called 

 

Darwin

 

. Darwin is a 
complete operating system based on many of the same technologies that underlie 
Mac OS X. However, Darwin does not include Apple’s proprietary graphics or 
applications layers, such as Quartz, QuickTime, or OpenGL. 

Figure 2-2 shows the relationship between Darwin and Mac OS X. Both build upon 
the same kernel, but Mac OS X adds Core Services, Application Services and 
QuickTime, as well as the

 

Classic

 

, 

 

Carbon

 

, 

 

Cocoa

 

, and Java (JDK) application 
environments. Both Darwin and Mac OS X include the BSD command-line 
application environment; however, in Mac OS X, this environment is usually 
hidden.

 

Figure 2-2

 

Darwin and Mac OS X

 

Darwin technology is based on 

 

BSD

 

, Mach 3.0, and Apple technologies. Best of all, 
Darwin technology is Open Source technology, which means that developers have 
full access to the source code. In effect, Mac OS X third-party developers can be part 
of the Darwin core system software development team. Developers can also see 

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment
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how Apple is doing things in the core operating system and adopt (or adapt) code 
to use within their own products. Refer to the 

 

Apple Public Source License

 

 for 
details.

Because the same system software forms the core of both Mac OS X and Darwin, 
system software developers can write software that runs on both Mac OS X and 
Darwin with few, if any, required changes. The only difference might be in the way 
the software interacts with the application environment. 

The Mac OS X core operating system is based on proven technology from many 
sources. A large portion of this technology is derived from FreeBSD, a version of 
4.4BSD that offers advanced networking, performance, security, and compatibility 
features. Other parts of the system software, such as Mach, are based on technology 
previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology 
acquired from NeXT. Much of the code is platform-independent. All of the core 
operating-system code is available in source form.

The core technologies have been chosen for several reasons. Mach provides a clean 
set of abstractions for dealing with memory management, interprocess (and 
interprocessor) communication, and other low-level operating-system functions. In 
today’s rapidly changing hardware environment, this provides a useful layer of 
insulation between the operating system and the underlying hardware. 

BSD is a carefully engineered, mature operating system with many capabilities. In 
fact, most of today’s commercial Linux, UNIX, and other similar operating systems 
contain a great deal of BSD code. BSD also provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKEs), 
have been designed and engineered by Apple to take advantage of advanced 
capabilities, such as those provided by an object-oriented programming model. Mac 
OS X combines these new technologies with time-tested industry standards to 
create an operating system that is stable, reliable, flexible, and extensible.

 

Architecture

 

The foundation layer of Darwin and Mac OS X is composed of several architectural 
components, as shown in Figure 2-3. Taken together, these components form the 

 

kernel environment

 

 or simply, the kernel. 
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Figure 2-3

 

Mac OS X kernel architecture

 

Important

 

Note that Mac OS X uses the term 

 

kernel

 

 somewhat 
differently than you may be used to seeing it used.

A kernel, in traditional operating-system terminology, is a small nucleus of 
software that provides only the minimal facilities necessary for implementing 
additional operating-system services. — from 

 

The Design and Implementation of the 
4.4 BSD Operating System

 

, McKusick, Bostic, Karels, and Quarterman, 1996

Instead, Mac OS X uses the term kernel to refer to everything that executes in the 
kernel address space. 

The Mac OS X kernel includes Mach, BSD, the I/O Kit, file systems, and networking 
components. Each of these components is described briefly in the following 
sections. For further details, refer to the specific component chapters or to the 
reference material listed in the Bibliography.

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit
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Mach

 

Mach manages processor resources such as CPU usage and memory, handles 
scheduling, provides memory protection, and provides a messaging-centered 
infrastructure to the rest of the operating-system layers. The Mach component 
provides

 

�

 

untyped 

 

IPC

 

 and 

 

RPC

 

�

 

support for 

 

SMP

 

�

 

support for 

 

real-time

 

 services

 

�

 

an

 

external pager

 

�

 

modular architecture

 

�

 

improved performance

 

BSD 

 

Above the Mach layer, the BSD layer provides “OS personality” APIs and services. 
The BSD layer is based on the BSD kernel, primarily 

 

FreeBSD

 

 . The BSD component 
provides

 

�

 

file systems

 

�

 

networking

 

�

 

basic security policies such as user IDs and permissions

 

�

 

the system framework – a mechanism for exporting APIs to the application 
layers

 

�

 

the BSD process model, including process IDs and signals

 

�

 

FreeBSD kernel APIs

 

�

 

many of the 

 

POSIX

 

 APIs

 

�

 

Pthreads

 

 (POSIX threads implementation)
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I/O Kit

 

The I/O Kit provides a framework for simplified driver development, supporting 
many categories of devices.The I/O Kit features an object-oriented I/O architecture 
implemented in a restricted subset of C++. The I/O Kit framework is both modular 
and extensible. The I/O Kit component provides

 

�

 

true plug and play

 

�

 

dynamic device management

 

�

 

dynamic (“on-demand”) loading of drivers

 

�

 

power management for desktop systems as well as portables

 

�

 

multiprocessor capabilities

 

Networking

 

Mac OS X networking takes advantage of BSD’s advanced networking capabilities 
to provide support for modern features, such as Network Address Translation 
(

 

NAT

 

) and 

 

firewalls

 

. The networking component provides

 

�

 

4.4BSD TCP/IP stack and socket APIs

 

�

 

support for both IP and AppleTalk

 

�

 

multihoming

 

�

 

routing

 

�

 

multicast

 

 support

 

�

 

server tuning

 

�

 

socket-based AppleTalk

 

�

 

Mac OS Classic support

� Carbonized Open Transport APIs
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File Systems
Mac OS X provides support for numerous types of file systems, including HFS, 
HFS+, UFS, NFS, ISO 9660, and others. The default file-system type is HFS+; Mac 
OS X boots (and “roots”) from HFS+. Advanced features of Mac OS X file systems 
include an enhanced Virtual File System (VFS) design. VFS provides for a layered 
architecture (file systems are stackable). The file system component provides

� UTF-8 (Unicode) support

� increased performance

Kernel Extensions

Mac OS X provides a kernel extension mechanism as a means of allowing dynamic 
loading of pieces of code into the kernel, without the need to recompile. These 
pieces of code are known generically as plug-ins or, in the Mac OS X kernel, as 
kernel extensions or KEXTs. 

Because KEXTs provide both modularity and dynamic loadability, they are a 
natural choice for any relatively self-contained service that requires access to kernel 
internal interfaces. Many of the components of the kernel environment support this 
extension mechanism, although in different ways. 

For example, some of the new networking features involve the use of network 
kernel extensions (NKEs). The ability to dynamically add a new file-system 
implementation is based on VFS KEXTs. Device drivers and device families in the 
I/O Kit are implemented using KEXTs. KEXTs make development much easier for 
developers writing drivers or those writing code to support a new volume format 
or networking protocol. KEXTs are discussed in more detail in the chapter 
“Extending the Kernel” (page 59).
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3 Mach

The fundamental services and primitives of the Mac OS X kernel are based on Mach 
3.0. Apple has modified and extended Mach to better meet Mac OS X functional and 
performance goals.

Mach 3.0 was originally conceived as a simple, extensible, communications 
microkernel. It is capable of running as a standalone kernel, with other traditional 
operating-system services such as I/O, file systems, and networking stacks running 
as user-mode servers. 

However, in Mac OS X, Mach is linked with other kernel components into a single 
kernel address space. This is primarily for performance; it is much faster to make a 
direct call between linked components than it is to send messages or do RPCs 
between separate tasks. This modular structure results in a more robust and 
extensible system than a monolithic kernel would allow, without the performance 
penalty of a pure microkernel.

Thus in Mac OS X, Mach is not primarily a communication hub between clients and 
servers. Instead, its value consists of its abstractions, its extensibility, and its 
flexibility.   In particular, Mach provides

� object-based APIs with communication channels (efor example, ports) as object 
references

� highly parallel execution, including preemptively scheduled threads and 
support for SMP

� a flexible scheduling framework, with support for real-time usage

� a complete set of IPC primitives, including messaging, RPC, synchronization, 
and notification

� support for large virtual address spaces, shared memory regions, and memory 
objects backed by persistent store
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� proven extensibility and portability, for example across instruction set 
architectures and in distributed environments

� security and resource management as a fundamental principle of design; all 
resources are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstractions that have been designed to be both simple 
and powerful. The main kernel abstractions are

� Tasks .The units of resource ownership; each task consists of a virtual address 
space, a port right name space, and a set of threads.

� Threads. The units of CPU execution.

� Address space. In conjunction with memory managers, Mach implements the 
notion of a sparse virtual address space and shared memory.

� Memory objects. The internal units of memory management. Memory objects 
include named entries and regions; they are representations of 
potentially-persistent data that may be mapped into address spaces.

� Ports. Secure, simplex communication channels, accessible only via send and 
receive capabilities (rights).

� IPC. Message queues, remote procedure calls, notifications, semaphores, and 
lock sets.

� Time. Clocks, timers, and waiting.

At the trap level, the interface to most Mach abstractions consists of messages sent 
to and from kernel ports representing those objects. The trap-level interfaces (such 
as mach_msg_overwrite_trap) and message formats are themselves abstracted in 
normal usage by the Mach Interface Generator (MIG). MIG is used to compile 
procedural interfaces to the message-based APIs, based on descriptions of those 
APIs.
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Tasks and Threads

Mac OS X processes and POSIX threads (PThreads) are implemented on top of 
Mach tasks and threads, respectively. A thread is the point of control. A task exists 
to provide resources for the threads it contains. This split is made to provide for 
parallelism and resource sharing.

A thread:

� is a point of control flow in a task

� has access to all of the elements of the containing task

�  executes (potentially) in parallel with other threads, even threads within the 
same task

� has minimal state information, for low overhead

A task:

� is a collection of system resources; these resources, with the exception of the 
address space, are referenced by ports. These resources may be shared with 
other tasks if rights to the ports are so distributed.

� provides a large, potentially sparse address space, referenced by machine 
address; portions of this space may be shared through inheritance or external 
memory management.

� contains some number of threads.

Note that a task has no life of its own; only threads execute instructions. When it is 
said that “task Y does X,” what is really meant is that “a thread contained within 
task Y does X.”

A task is a fairly expensive entity. It exists to be a collection of resources. All of the 
threads in a task share everything. Two tasks share nothing without an explicit 
action (although the action is often simple) and some resources (such as port receive 
rights) cannot be shared between two tasks at all.
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A thread is a fairly lightweight entity. It is fairly cheap to create and has low 
overhead to operate. This is true because a thread has little state information(mostly 
its register state); its owning task bears the burden of resource management. On a 
multiprocessor machine, it is possible for multiple threads in a task to execute in 
parallel. Even when parallelism is not the goal, multiple threads have an advantage 
in that each thread can use a synchronous programming style, instead of attempting 
asynchronous programming with a single thread attempting to provide multiple 
services.

A thread is the basic computational entity. A thread belongs to one and only one 
task that defines its virtual address space. To affect the structure of the address 
space or to reference any resource other than the address space, the thread must 
execute a special trap instruction that causes the kernel to perform operations on 
behalf of the thread or to send a message to some agent on behalf of the thread. In 
general, these traps manipulate resources associated with the task containing the 
thread. Requests can be made of the kernel to manipulate these entities: to create 
them, delete them, and affect their state.

Mach provides a flexible framework for thread scheduling policies. Early versions 
of Mac OS X support both the time-sharing and fixed-priority policies. A 
timesharing thread’s priority is raised and lowered to balance its resource 
consumption against other time-sharing threads. 

Fixed-priority threads execute for a certain quantum of time, and then are put at the 
end of the queue of threads of equal priority. Setting a fixed priority thread's 
quantum level to infinity allows the thread to run until it blocks, or until it is 
preempted by a thread of higher priority. High priority real-time threads are 
usually fixed priority.

Future versions of Mac OS X may have additional scheduling policies, for more 
sophisticated real-time support.
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Ports, Port Rights, Port Sets, and Port Name Spaces

With the exception of the task’s virtual address space, all other Mach resources are 
accessed through a level of indirection known as a port. A port is an endpoint of a 
unidirectional communication channel between a client who requests a service and 
a server who provides the service. If a reply is to be provided to such a service 
request, a second port must be used.

In most cases, the resource that is accessed by the port (that is, named by it) is 
referred to as an object. Most objects named by a port have a single receiver and 
(potentially) multiple senders. That is, there is exactly one receive port, and at least 
one sending port, for a typical object such as a message queue.

The service to be provided by an object is determined by the manager that receives 
the request sent to the object. It follows that the receiver for ports associated with 
kernel-provided objects is the kernel and the receiver for ports associated with 
task-provided objects is the task providing that object.

For ports that name task-provided objects, it is possible to change the receiver of 
requests for that port to a different task, for example by passing the port to that task 
in a message. A single task may have multiple ports that refer to resources it 
supports. For that matter, any given entity can have multiple ports that represent it, 
each implying different sets of permissible operations. For example, many objects 
have a name port and a control port (sometimes called the privileged port). Access 
to the control port allows the object to be manipulated; access to the name port 
simply names the object, for example, to return information about it.

Tasks have permissions to access ports in certain ways (send, receive, send-once); 
these are called port rights.   A port can be accessed only via a right. Ports are often 
used to grant clients access to objects within Mach. Having the right to send to the 
object’s IPC port denotes the right to manipulate the object in prescribed ways. As 
such, port right ownership is the fundamental security mechanism within Mach. 
Having a right to an object is to have a capability to access or manipulate that object.

Port rights can be copied and moved between tasks via IPC. Doing so, in effect, 
passes capabilities to some object or server.
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One type of object referred to by a port is a port set. As the name suggests, a port set 
is a set of port rights that can be treated as a single unit when receiving a message 
or event from any of the members of the set. Port sets permit one thread to wait on 
a number of message and event sources, for example in work loops.

Traditionally in Mach, the communication channel denoted by a port was always a 
queue of messages. However, Mac OS X supports additional types of 
communication channels, and these new types of IPC object are also represented by 
ports and port rights. See the section, “Task to Task Communication (IPC)” 
(page 28), for more details about messages and other IPC types.

Ports and port rights do not have systemwide names that allow arbitrary ports or 
rights to be manipulated directly. Ports can be manipulated by a task only if the task 
has a port right in its port name space. A port right is specified by a port name, an 
integer index into a 32-bit port name space. Each task has associated with it a single 
port name space.

Tasks acquire port rights when another task explicitly inserts them into its name 
space, when they receive rights in messages, by creating objects that return a right 
to the object, and via Mach calls for certain special ports (mach_thread_self, 
mach_task_self, and mach_reply_port.)

Memory Management

As with most modern operating systems, Mach provides addressing to large, 
sparse, virtual address spaces. Runtime access is made via virtual addresses that 
may not correspond to locations in physical memory at the initial time of the 
attempted access. Mach is responsible for reconciling a requested access in virtual 
space with a location in physical memory. It does so through demand paging.

A range of a virtual address space is populated with data when a memory object is 
mapped into that range. All data in an address space is ultimately provided through 
memory objects. Mach asks the owner of a memory object (a pager) for the contents 
of a page when establishing it in physical memory and returns the possibly 
modified data to the pager before reclaiming the page. Mac OS X includes two 
built-in pagers—the default pager and the vnode pager. 
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The default pager handles nonpersistent memory, known as anonymous memory. 
Anonymous memory is zero-initialized, and it exists only during the life of a task. 
The vnode pager maps files into memory objects. Mach exports an interface to 
memory objects to allow their contents to be contributed by user-mode tasks. This 
interface is known as the External Memory Management Interface, or EMMI.

The memory management subsystem exports virtual memory handles known as 
named memory entries. Like most kernel resources, these are denoted by ports. 
Having a named memory entry handle allows the owner to map the underlying 
virtual memory object or to pass the right to map the underlying object to others. 
Mapping a named entry in two different tasks results in a shared memory window 
between the two tasks, thus providing a flexible method for establishing shared 
memory. 

Address ranges of virtual memory space may also be populated through direct 
allocation (using vm_allocate). The underlying virtual memory object is 
anonymous and backed by the default pager. Shared ranges of an address space 
may also be set up via inheritance. When new tasks are created, they are cloned 
from a parent. This cloning pertains to the underlying memory address space as 
well. Mapped portions of objects may be inherited as a copy, or as shared, or not at 
all, based on attributes associated with the mappings. Mach practices a form of 
delayed copy known as copy-on-write to optimize the performance of inherited 
copies on task creation.

Rather than directly copying the range, a copy-on-write optimization is 
accomplished by protected sharing. The two tasks share the memory to be copied, 
but with read-only access. When either task attempts to modify a portion of the 
range, that portion is copied at that time. This lazy evaluation of memory copies is 
an important optimization that permits simplifications in several areas, notably the 
messaging APIs.

One other form of sharing is provided by Mach, through the export of named 
regions. A named region is a form of a named entry, but instead of being backed by 
a virtual memory object, it is backed by a virtual map fragment. This fragment may 
hold mappings to numerous virtual memory objects. It is mappable into other 
virtual maps, providing a way of inheriting not only a group of virtual memory 
objects but also their existing mapping relationships. This feature offers significant 
optimization in task setup, for example when sharing a complex region of the 
address space used for shared libraries.
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Task to Task Communication (IPC)

Communication between tasks is an important element of the Mach philosophy. 
Mach supports a client/server system structure in which tasks (clients) access 
services by making requests of other tasks (servers) via messages sent over a 
communication channel.

The endpoints of these communication channels in Mach are called ports, while 
port rights denote permission to use the channel. The forms of IPC provided by 
Mach include

� message queues

� semaphores

� notifications

� lock sets

� remote procedure calls (RPCs)

The type of IPC object denoted by the port determines the operations permissible 
on that port, and how (and whether) data transfer occurs. 

Important
The IPC facilities in Mac OS X are in a state of transition. In 
early versions of the system, not all of these IPC types may 
be implemented.

There are two fundamentally different Mach APIs for raw manipulation of ports—
the mach_ipc family and the mach_msg family. Within reason, both families may be 
used with any IPC object; however, the mach_ipc calls are preferred in new code. 
The mach_ipc calls maintain state information where appropriate in order to support 
the notion of a transaction. The mach_msg calls are supported for legacy code but 
deprecated; they are stateless. 
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IPC Transactions and Event Dispatching
When a thread calls mach_ipc_dispatch, it repeatedly processes events coming in on 
the registered port set. These events could be an argument block from an RPC object 
(as the results of a client’s call), a lock object being taken (as a result of some other 
thread’s releasing the lock), a notification or semaphore being posted, or a message 
coming in from a traditional message queue. 

These events are handled via callouts from mach_msg_dispatch. Some events imply 
a transaction during the lifetime of the callout. In the case of a lock, the state is the 
ownership of the lock. When the callout returns, the lock is released. In the case of 
remote procedure calls, the state is the client’s identity, the argument block, and the 
reply port. When the callout returns, the reply is sent.

When the callout returns, the transaction (if any) is completed, and the thread waits 
for the next event. The mach_ipc_dispatch facility is intended to support work loops.

Message Queues
Originally, the sole style of interprocess communication in Mach was the message 
queue. Only one task can hold the receive right for a port denoting a message queue. 
This one task is allowed to receive (read) messages from the port queue. Multiple 
tasks can hold rights to the port that allow them to send (write) messages into the 
queue. 

A task communicates with another task by building a data structure that contains a 
set of data elements and then performing a message-send operation on a port for 
which it holds send rights. At some later time, the task with receive rights to that 
port will perform a message-receive operation.

A message may consist of some or all of the following:

� pure data

� copies of memory ranges

� port rights

� kernel implicit attributes, such as the sender’s security token
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The message transfer is an asynchronous operation. The message is logically copied 
into the receiving task, possibly with copy-on-write optimizations. Multiple threads 
within the receiving task can be attempting to receive messages from a given port, 
but only one thread can receive any given message.

Semaphores
Semaphore IPC objects support wait, post, and post all operations. These are 
counting semaphores, in that posts are saved (counted) if there are no current 
waiting threads. A post all operation wakes up all currently waiting threads. There 
is no data associated with a semaphore.

Notifications
Like semaphores, notification objects also support post and wait operations, but 
with the addition of a state field. The state is a fixed-size, fixed-format field that is 
defined when the notification object is created. Each post updates the state field; 
there is a single state, that is overwritten by each post.

Locks
A lock is a mutex. The primary interfaces to locks are transaction oriented (see “IPC 
Transactions and Event Dispatching” (page 29)). During the transaction, the thread 
holds the lock. When it returns from the transaction, the lock is released. There is no 
data associated with the lock.

Remote Procedure Calls (RPCs)
As the name implies, an RPC object is designed to facilitate and optimize remote 
procedure calls. The primary interfaces to RPC objects are transaction oriented (see 
“IPC Transactions and Event Dispatching” (page 29))

When an RPC object is created, a set of argument block formats is defined. When an 
RPC (a send on the object) is made by a client, it causes a message in one of the 
predefined formats to be created and queued on the object, then eventually passed 
to the server (the receiver). When the server returns from the transaction, the reply 
is returned to the sender. Mach tries to optimize the transaction by executing the 
server using the client’s resources; this is called thread migration.
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Time Management

The traditional abstraction of time in Mach is the clock, which provides a set of 
asynchronous alarm services based on mach_timespec_t. There are one or more 
clock objects, each defining a monotonically increasing time value expressed in 
nanoseconds. The real-time clock is built in, and is the most important, but there 
may be other clocks for other notions of time in the system. Clocks support 
operations to get the current time, sleep for a given period, set an alarm (a 
notification that is sent at a given time), and so forth. 

The mach_timespec_t APIs are deprecated in Mac OS X. The newer and preferred 
APIs are based on timer objects, that in turn use AbsoluteTime as the basic data type. 
AbsoluteTime is a machine-dependent type, typically based on the platform-native 
time base. Routines are provided to convert AbsoluteTime values to and from other 
data types, such as nanoseconds. Timer objects support asynchronous, drift-free 
notification, cancellation, and premature alarms. They are more efficient and permit 
higher resolution than clocks.

Important
As with several other Mach services, time management is in 
a state of transition in Mac OS X. Early versions of the system 
may not implement timer objects.
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The BSD portion of the Mac OS X kernel is derived from FreeBSD, a version of 
4.4BSD that offers advanced networking, performance, security, and compatibility 
features. Specifically, the BSD layer is based on the 4.4BSD-Lite2 release from 
Computer Systems Research Group (CSRG) at the University of California at 
Berkeley. BSD provides many advanced features, including these:

� Preemptive multitasking with dynamic priority adjustment. Smooth and fair 
sharing of the computer between applications and users is ensured, even under 
the heaviest of loads. 

� Multiuser access. Many people can use a Mac OS X system simultaneously for a 
variety of things. This means, for example, that system peripherals such as 
printers and disk drives are properly shared between all users on the system or 
the network and that individual resource limits can be placed on users or groups 
of users, protecting critical system resources from overuse. 

� Strong TCP/IP networking with support for industry standards such as SLIP, 
PPP, NFS, DHCP, and NIS. Mac OS X can interoperate easily with other systems 
as well as act as an enterprise server, providing vital functions such as NFS 
(remote file access) and email services, or Internet services such as HTTP, FTP, 
routing, and firewall (security) services.

� Memory protection. Applications cannot interfere with each other. One 
application crashing does not affect others in any way.

� Virtual memory and dynamic memory allocation. Applications with large 
appetites for memory are satisfied while still maintaining interactive response to 
users. With the virtual memory system in Mac OS X, each application has access 
to its own 4 GB memory address space; this should satisfy even the most 
memory-hungry applications.
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� Support for kernel threads, based on Mach threads. User-level threading 
packages are implemented on top of kernel threads. Each kernel thread is an 
independently scheduled entity. When a thread from a user process blocks in a 
system call, other threads from the same process can continue to execute on that 
or other processors. By default, a process in the conventional sense has one 
thread, the main thread. A user process can use the POSIX thread API to create 
other user threads.

� SMP support. Support is included for machines with multiple CPUs.

� Source code. Developers gain the greatest degree of control over the BSD 
programming environment because source is included.

� Many of the POSIX APIs.

BSD Facilities

The facilities that are available to a user process are logically divided into two parts: 
kernel facilities directly implemented by code running in the operating system, and 
system facilities implemented either by the system, or in cooperation with a server 
process.

The facilities implemented in the kernel define the virtual machine in which each 
process runs. Like many real machines, this virtual machine has memory 
management, an interrupt facility, timers, and counters.

The virtual machine also allows access to files and other objects through a set of 
descriptors. Each descriptor resembles a device controller and supports a set of 
operations. Like devices on real machines, some of which are internal to the 
machine and some of which are external, parts of the descriptor machinery are built 
into the operating system, while other parts are often implemented in server 
processes.

The BSD component provides the following kernel facilities

� processes and protection

� host and process identifiers

� process creation and termination
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� user and group IDs

� process groups

� memory management

� text, data, stack, and dynamic shared libraries

� mapping pages

� page protection control

� synchronization primitives

� signals

� signal types

� signal handlers

� sending signals

� timing and statistics

� real time

� interval time

� descriptors

� fles

� pipes

� sockets

� POSIX shared memory

� POSIX semaphores

� resource controls

� process priorities

� resource utilization and resource limits

� quotas
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� system operation support

� bootstrap operations

� shut-down operations

� accounting

BSD system facilities (facilities that may interact with user space) include

� generic input/output operations such as read and write, nonblocking and 
asynchronous operations

� file system operations

� interprocess communication

� handling of terminals and other devices

� process control

� networking operations

Differences between Mac OS X and BSD

Although the BSD portion of Mac OS X is primarily derived from FreeBSD, some 
changes have been made. 

� The sbrk() system call for memory management has not been implemented in 
Mac OS X.

� The Mac OS X runtime model supports dynamic shared libraries. This model 
uses Mach-O and PEF binary file formats; the dynamic link editor (dyld) and the 
Code Fragment Manager (CFM) use these formats respectively. The kernel 
supports execve() with Mach-O binaries. Mapping and management of Mach-O 
dynamic shared libraries, as well as launching of PEF-based applications, are 
performed by user-space code.

� Mac OS X does not support memory-mapped devices through the mmap() API.
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� The swapon() call is not supported; macx_swapon() is the equivalent call from the 
Mach pager.

� The Unified Buffer Cache implementation in Mac OS X differs from that found 
in FreeBSD.

In addition, several new features have been added that are specific to the Mac OS X 
(Darwin) implementation of BSD. These features are not found in FreeBSD.
� enhancements to file -system buffer cache and file I/O clustering

� adaptive and speculative read ahead

� user process controlled read ahead

� time aging of the file-system buffer cache

� ehancements to file -system support

� implementation of Apple extensions for ISO-9660 file systems

� multi-threaded asynchronous I/O for NFS

� addition of system calls to support semantics of Mac OS Extended file 
systems

� additions to naming conventions for pathnames, as required for accessing 
multiple forks in Mac OS Extended file systems

For Further Reading

The BSD component of the Mac OS X kernel is complex. A complete description is 
beyond the scope of this document. However, many excellent references exist for 
this component. If you are interested in BSD, be sure to refer to the Bibliography for 
further information.

Although the BSD layer of Mac OS X is derived from 4.4BSD, keep in mind that it is 
not identical to 4.4BSD. Some functionality of 4.4 BSD has not been included in Mac 
OS X. Some new functionality has been added. The cited reference materials are 
recommended for additional reading. However, they should not be presumed as 
forming a definitive description of Mac OS X.
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5 Device Drivers and the I/O Kit

Those of you who are already familiar with writing device drivers for Mac OS 8 and 
9 or for BSD will discover that writing drivers for Mac OS X requires some new 
ways of thinking. In creating Mac OS X, Apple has completely redesigned the 
Macintosh I/O architecture, providing a framework for simplified driver 
development, supporting many categories of devices. This framework is called the 
I/O Kit.

The I/O Kit uses an object-oriented programming model, implemented in a 
restricted subset of C++. Use of object-oriented frameworks can dramatically 
increase developer productivity. Once you are familiar with the new model, you 
should find that it makes writing device drivers easier and more efficient than ever 
before.

From a programming perspective, the I/O Kit provides an abstract view of the 
system hardware to the upper layers of Mac OS X. By starting with properly 
designed base classes, you gain a head start in writing a new driver; with much of 
the driver code already written, the you need only to fill in the specific code that 
makes your driver different.

Part of the philosophy of the I/O Kit is to make the design completely open. Rather 
than hiding APIs in an attempt to protect developers from themselves, all of the I/O 
Kit source is available as part of Darwin. You can use the source code as an aid to 
designing (and debugging) new drivers.

Instead of hiding the interfaces, Apple’s designers have chosen to lead by example. 
Sample code and classes show the recommended (easy) way to write a driver. 
However, developers are not prevented from doing things the hard way (or the 
wrong way). Instead, attention has been concentrated on making the “best” ways 
easy to follow.
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Redesigning the I/O Model

You might ask why Apple chose to redesign the I/O model. At first glance, it might 
seem that reusing the model from Mac OS 9 or FreeBSD would have been an easier 
choice. There are several reasons for the decision, however. 

Neither the Mac OS 8 and 9 driver model nor the FreeBSD model offered a sufficient 
feature set to meet the needs of Mac OS X. The underlying operating-system 
technology of Mac OS X is very different from that of Mac OS 8 and 9. The Mac OS X 
kernel is significantly more advanced than the previous Mac OS system 
architecture; Mac OS X needs to handle memory protection, preemption, 
multiprocessing, and other features not present in previous versions of Mac OS. 
Although FreeBSD is capable of handling these features, the BSD model did not 
offer the automatic configuration, stacking, power management, or dynamic 
device-loading features required in a modern, consumer-oriented operating 
system. 

By redesigning the I/O architecture, Apple’s engineers can take best advantage of 
the operating-system features in Mac OS X. For example, virtual memory (VM) is 
not a fundamental part of the operating system in Mac OS 8 and 9. Thus, every 
driver writer must know about (and write for) VM.This has presented certain 
complications for developers. In contrast, Mac OS X has simplified driver 
interaction with VM. VM capability is inherent in the Mac OS X operating system 
and cannot be turned off by the user. Thus, VM capabilities can be abstracted into 
the I/O Kit, and the code for handling VM need not be written for every driver.

Mac OS X offers an unprecedented opportunity to take advantage of hardware 
complexity without the requirement of encoding software complexity into each 
new device driver. Under Mac OS 9, for example, all software development kits 
(SDKs) were independent of each other, duplicating functionality between them. In 
Mac OS X, the I/O Kit is delivered as part of the single kernel development kit 
(KDK); all portions of the KDK rely on common underpinnings.

In contrast with traditional I/O models, the reusable code model provided by the 
I/O Kit can decrease your development work substantially. In porting drivers from 
Mac OS 9, for example, the Mac OS X counterparts have been up to 75% smaller.
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In general, all hardware support is provided directly by I/O Kit entities. One 
exception to this rule is imaging devices such as printers, scanners, and digital 
cameras (although these do make some use of I/O Kit functionality). Specifically, 
although communication with these devices is handled by the I/O Kit (for instance, 
under the Firewire or USB families), support for particular device characteristics is 
handled by user-space code (see “Accessing Kernel APIs from User Space” 
(page 45) for further discussion). If you need to support imaging devices, you 
should employ the appropriate imaging software development kit (SDK). 

The I/O Kit attempts to represent, in software, the same hierarchy that exists in 
hardware. Some things are difficult to abstract, however. When the hardware 
hierarchy is difficult to represent (for example, if layering violations occur), then the 
I/O Kit abstractions provide less help for writing drivers.

In addition, all drivers exist to drive hardware; all hardware is different. Even with 
the reusable model provided by the I/O Kit, you still need to be aware of any 
hardware quirks. The code to support those quirks still needs to be unique from 
driver to driver.

Although most developers should be able to take full advantage of I/O Kit device 
families (see “Families” (page 42)), there will occasionally be some who cannot. 
Even those developers should be able to make use of parts of the I/O Kit, however. 
In any case, the source code is always available. Developers who need to do so can 
replace functionality and modify the classes themselves.

In designing the I/O Kit, one goal has been to make developers’ lives easier. 
Unfortunately, it is not possible to make all developers’ lives uniformly easy. 
Therefore, a second goal of the I/O Kit design is to meet the needs of the majority 
of developers, without getting in the way of the minority that need lower level 
access to the hardware. 

I/O Kit Architecture

The I/O Kit provides a model of system hardware in an object-oriented framework. 
Each type of service or device is represented by a C++ class; each discrete service or 
device is represented by an instance (object) of that class.
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There are three major conceptual elements of the I/O Kit architecture: 

� Families

� Drivers

� Nubs

Families
A family defines a collection of software abstractions that are common to all devices 
of a particular category. These abstractions are implemented in C code and C++ 
classes. Families may include headers, libraries, sample code, test harnesses, and 
documentation. If it seems more familiar, however, you can think of a family simply 
as a library. 

Families define and implement the abstractions that are common to all devices of a 
particular category. They provide the APIs, generic support code, and at least one 
example driver (in the documentation). 

Families provide services for many different categories of devices. For example, 
there are protocol families (such as SCSI, USB, and Firewire), storage families (disk), 
network families, and families to describe human interface devices (mouse, and 
keyboard). When devices have features in common, the software that supports 
those features is most likely found in a family.

Common abstractions are defined and implemented by the family, allowing all 
drivers in a family to share similar features easily. For example, all SCSI controllers 
have certain things they must do, such as scanning the SCSI bus. The SCSI family 
defines and implements the functionality that is common to SCSI controllers. 
Because this functionality has been included in the SCSI family,you do not need to 
include scanning code (for example) in your new SCSI controller driver. 

Instead, you can concentrate on device-specific details that make your driver 
different from other SCSI drivers. The use of families means there is less code for a 
developer to write.

Families are dynamically loadable; they are loaded when needed and unloaded 
when no longer needed. Although some common families may be preloaded at 
system startup, all families should be considered to be dynamically loadable (and, 
therefore, potentially unloaded). See the “Connection Example” (page 44) for an 
illustration.
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Drivers
A driver is an I/O Kit object that manages a specific piece of hardware, 
implementing the appropriate I/O Kit abstractions for controlling that hardware. 
When a driver is loaded, its required families are also loaded to provide necessary, 
common functionality. The request to load a driver causes all of its dependent 
requirements (and their requirements) to be loaded first. After all requirements are 
met, the requested driver is loaded as well. See the “Connection Example” (page 44) 
for an illustration.

Note that families are loaded upon demand of the driver, not the other way around. 
Occasionally, a family may already be loaded when a driver demands it; however, 
you should never assume this. To ensure that all requirements are met, each device 
driver should list all of its requirements in its property list.

Each driver is in a client-provider relationship, wherein every driver must know 
about both the family it inherits from and the family it connects to. A SCSI controller 
driver, for example, must be able to communicate with both the SCSI family and the 
PCI family (as a client of PCI and provider of SCSI). A SCSI disk driver 
communicates with both the SCSI and storage families. 

Nubs
A nub is an I/O Kit object that represents a detected, controllable entity; that is, a 
nub represents a device or logical service. For example, a nub may represent a bus, 
a disk, a disk partition, a graphics adaptor, a keyboard, or any number of similar 
entities.

A nub is loaded as part of the family that instantiates it. Each nub provides access 
to the device or service that it represents and provides services such as matching, 
arbitration, and power management. 

For example, nubs match devices to drivers. Each nub provides a bridge between 
two drivers (and, by extension, between two families). It is most common that a 
driver publishes one nub for each individual device or service it controls; however, 
it is also possible for a driver that controls only a single device or service to act as its 
own nub. See the “Connection Example” (page 44) for an illustration.
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Connection Example
Figure 5-1 illustrates the I/O Kit architecture, using several example drivers and 
their corresponding families and nubs. Note that many different family and driver 
combinations are possible; this diagram shows only one possibility. Arrows 
represent order of creation or discovery.

Figure 5-1 I/O Kit Architecture example: families, drivers, and nubs

This example illustrates how a SCSI disk driver (Storage family) is connected to the 
PCI bus. The connection is made in several steps. 

1. The PCI Bbs driver discovers a PCI device and announces its presence by 
creating a nub (IOPCIDevice). The nub’s class is defined by the PCI family.

2. The nub identifies (matches) the correct device driver and requests that the 
driver be loaded. At the end of this matching process, a SCSI controller driver 
has been found and loaded. Loading the controller driver causes all required 
families to be loaded as well. In this case, the SCSI family is loaded; the PCI 
family (also required) is already present. The SCSI controller driver is given a 
reference to the IOPCIDevice nub.

3. The SCSI controller driver scans the SCSI bus for devices. Upon finding a device, 
it announces the presence of the device by creating a nub (IOSCSIDevice). The 
class of this nub is defined by the SCSI family.

4. The nub identifies (matches) the correct device driver and requests that the 
driver be loaded. At the end of this matching process, a disk driver has been 
found and loaded. Loading the disk driver causes all required families to be 
loaded as well. In this case, the Storage family is loaded; the SCSI family (also 
required) is already present. The disk driver is given a reference to the 
IOSCSIDevice nub.
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Accessing Kernel APIs from User Space

Mac OS X draws a distinction between kernel space and user space. Applications in 
user space cannot interface directly with kernel-space APIs.

Some family services are never exported to user space; these services are available 
only inside the kernel. One such example is the PCI family. For stability and security 
reasons, direct access to PCI resources from user space is forbidden.

In other cases, however, family services may need to be accessed from user space. 
For example, a game may need to interact with system software to set monitor 
depth or sound volume. As another example, a disk backup program may need to 
act as the “driver” for a tape drive. Other examples of user applications that may 
need to interact with nubs in kernel space might include those running scanners, 
printers, digital cameras, and so forth.

User Client Access
Many types of I/O Kit devices are made accessible across the user-kernel address 
space boundary by means of a user client. A user client is implemented in two parts 
and has a presence in both user and kernel space. The kernel portion is usually part 
of an appropriate family. The user portion is linked into the application as a library 
or Core Foundation plug-in (CFPlugin). A user client looks like a library when 
viewed from user space. From kernel space, it looks like a driver. 

The user client handles negotiation, protection, authentication, and other tasks in 
user space as if it were an in-kernel driver. An application can communicate with a 
device by acquiring the device nub through an appropriate user client. The user 
client attaches to the (kernel-space) nub on behalf of the (user-space) application.

Figure 5-2 illustrates one example of a user client, in this case, a USB printer 
application (OHCI is the standard USB controller interface). The printer “driver” is 
in user space (recall that printer support is outside of the kernel). A user client 
permits the communication of raw USB commands across the user-kernel address 
space boundary.
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Note that many different family and driver combinations are possible; this diagram 
shows only one possibility. Arrows represent order of creation or discovery. See 
“I/O Kit Architecture” (page 41) for a description of families, drivers, and nubs, as 
well as an explanation of their connection path.

Figure 5-2 Interaction with I/O Kit from user space

Many families already provide the necessary functionality for creating user clients. 
If you develop custom drivers that do not use I/O Kit families, however, you will 
need to write additional code. Any code that communicates between user space and 
kernel space must use of one or more of the following facilities available in 
Mac OS X:

� BSD system calls

� Mach IPC

� Mach shared memory

The I/O Kit uses primarily Mach IPC and Mach shared memory. In contrast, the 
networking and file system components of Mac OS X use primarily BSD system 
calls. 
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BSD Media Shim
The BSD media shim provides another way in which kernel APIs are exported into 
user space. The BSD media shim is not a user client; it is implemented entirely in 
kernel code. It provides a connection between a disk driver and BSD, by way of a 
nub (IOMedia) created by the disk driver. Although the BSD disk shim is included in 
the storage family, it does not inherit directly from the storage family.

The BSD media shim uses BSD system calls to provide user-space applications with 
access to disks by way of BSD-style device nodes (in the /dev directory). These 
device nodes are owned and managed by the device file system (devfs), a BSD 
analogue to an I/O Kit user client. The device file system uses a file-system model 
to represent devices rather than files. 

Figure 5-3 shows the BSD media shim providing a connection for a SCSI disk. Note 
that many different family and driver combinations are possible; this diagram 
shows only one possibility. Arrows represent order of creation or discovery. See 
“I/O Kit Architecture” (page 41) for a description of families, drivers, and nubs, as 
well as an explanation of their connection path.

Figure 5-3 The BSD media shim providing user-space access to disks
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6 Networking and Network Kernel 
Extensions

Network kernel extensions (NKEs) represent a specific case of a Mac OS X kernel 
extension. NKEs provide a way to extend and modify the networking infrastructure 
of Mac OS X dynamically, without recompiling or relinking the kernel. The effect is 
immediate and does not require rebooting the system.

Much of the content of this chapter has been excerpted from Chapter 1 of Inside Mac 
OS X: Network Kernel Extensions. For further information on to this topic, you should 
refer to that book.

NKEs can be used to 

� monitor network traffic 

� modify network traffic 

� receive notification of asynchronous events from the driver layer

In the last case, such events are received by the data link and network layers. 
Examples of these events include power management events and interface status 
changes. See Figure 6-1 (page 51) for an illustration of the data link and network 
layers.

Specifically, NKEs allow you to

� create protocol stacks that can be loaded and unloaded dynamically and 
configured automatically

� create modules that can be loaded and unloaded dynamically at specific 
positions in the network hierarchy.
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The Kernel Extension Manager dynamically adds NKEs to the running Mac OS X 
kernel inside the kernel’s address space. An installed and enabled NKE is invoked 
automatically, depending on its position in the sequence of protocol components, to 
process an incoming or outgoing packet.

All NKEs provide initialization and termination routines that the Kernel Extension 
Manager invokes when it loads or unloads the NKE. The initialization routine 
handles any operations that are needed to complete the incorporation of the NKEs 
into the kernel, such as updating protosw and domain structures. Similarly, the 
termination routine must remove references to the NKE from these structures to 
unload itself successfully. NKEs must provide a mechanism, such as a reference 
count, to ensure that the NKE can terminate without leaving dangling pointers.

Review of 4.4BSD Network Architecture

Mac OS X is based on the 4.4BSD operating system. The following structures control 
the 4.4BSD network architecture:

� socket structure—used to keep track of network information on a per-file 
descriptor basis. The socket structure is referenced by file descriptors from user 
space.

� domain structure—describes protocol families.

� protosw structure—describes protocol handlers. (A protocol handler is the 
implementation of a particular protocol in a protocol family.)

� ifnet structure—describes a network interface.

None of these structures is used uniformly throughout the 4.4BSD networking 
infrastructure. Instead, each structure is used at a specific level, as shown in 
Figure 6-1. 
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Figure 6-1 4.4 BSD network architecture

Above the network layer, packets are isolated on a per-user (per-file descriptor) 
basis. That is, packets are isolated based upon their ownership. Below the network 
layer, packets are isolated based on which device they go to (or originate from). The 
network layer provides a transition in how packets are viewed and processed. In the 
protocol stack (network layer) and the data link layer, the point of view is 
per-packet. Above these, in the socket structure, the point of view is the stream.

NKE Types

Making the 4.4BSD network architecture dynamically extensible requires several 
NKE types, for use at specific places in the kernel.

� Socket NKEs —which reside between the socket layer and the transport protocol 
handlers and are invoked through a protosw structure. Socket NKEs use a new 
set of dispatch vectors that intercept specific socket and socket buffer utility 
functions.

� Protocol family NKEs— which are collections of protocols that share a common 
addressing structure. Internally, a domain structure and a chain of protosw 
structures describe each protocol. 
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� Protocol handler NKEs—which process packets for a particular protocol within 
the context of a protocol family. A protosw structure describes a protocol handler 
and provides the mechanism by which the handler is invoked to process 
incoming and outgoing packets and for invoking various control functions.

� Data link NKEs—which are inserted below the protocol layer and above the 
network interface layer. This type of NKE can passively observe traffic as it 
flows in and out of the system (for example, a sniffer) or can modify the traffic 
(for example, by encrypttion or address translation).

Figure 6-2 summarizes the NKE architecture.

Figure 6-2 NKE architecture

Socket NKEs operate in one of two modes: programmatic or global. Data link NKEs 
operate only in global mode. 

A programmatic NKE is a socket NKE that is enabled under program control, using 
socket options, for a specific socket. That is, a program is responsible for enabling 
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In contrast, global socket NKEs as well as data link NKEs are automatically enabled 
when they are loaded and initialized. The developer (or application) need not know 
the names of the global NKEs that are enabled.

Modifications to 4.4BSD Networking Architecture

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were 
modified as follows:

� The protosw array referenced by the domain structure is now a linked list, 
thereby removing the array’s upper bound. The new max_protohdr member 
defines the maximum protocol header size for the domain. The new dom_refs 
member is a reference count that is incremented when a new socket for this 
address family is created and is decremented when a socket for this address 
family is closed.

� The protosw structure is no longer an array. The pr_next member has been added 
to link the structures together. This change has implications for protox usage for 
AF_INET and AF_ISO input packet processing. The pr_flags member is an 
unsigned integer instead of a short. NKE hooks have been added to link NKE 
descriptors together.
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7 File Systems and VFS Stacks

Mac OS X provides “out-of-the-box” support for several different file systems. 
These include Mac OS Extended format (HFS+), the BSD standard file system 
format (UFS), NFS (an industry standard for networked file systems), and ISO 9660 
(used for CD-ROM). 

Support is also included for reading the older, Mac OS Standard format (HFS) 
file-system type; however, you should not plan to format new volumes using Mac 
OS Standard format. Mac OS X cannot boot from these file systems, nor does the 
Mac OS Standard format provide some of the information required by Mac OS X.

Mac OS X boots and “roots” from Mac OS Extended format. That is, Mac OS X can 
mount a Mac OS Extended Format volume and use it as the primary, or root, file 
system. The Mac OS Extended format provides many of the same characteristics as 
Mac OS Standard format but adds additional support for modern features such as 
file permissions, longer filenames, Unicode, both hard and symbolic links, and 
larger disk sizes.

Other file systems can be mounted, allowing users to gain access to additional 
volume formats and features. For example, UFS provides case sensitivity and other 
characteristics that may be expected by BSD commands. In contrast, Mac OS 
Extended Format is not case-sensitive (but is case-preserving).

NFS provides access to network servers as if they were locally mounted file 
systems. The Carbon application environment mimics many expected behaviors of 
Mac OS Extended format on top of both UFS and NFS. These include such 
characteristics as Finder Info, file ID access, and aliases.

By using the Mac OS X Virtual File System (VFS) capability and writing kernel 
extensions, you can add support for other file systems. Examples of file systems that 
are not currently supported in Mac OS X but that you may wish to add to the system 
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include the Andrew file system (AFS) and the Windows NT file system (NTFS). If 
you want to support a new volume format or networking protocol, you’ll need to 
write a file-system kernel extension.

Working With the File System

In Mac OS X, the vnode structure provides the internal representation of a file or 
directory (folder). There is a unique vnode allocated for each active file or folder, 
including the root.

Within a file system, operations on specific files and directories are implemented via 
vnodes and VOP (vnode operation) calls. VOP calls are used for operations on 
individual files or directories (such as open, close, read, or write). Examples include 
VOP_OPEN to open a file and VOP_READ to read file contents. In contrast, 
file-system-wide operations are implemented using VFS calls. VFS calls are 
primarily used for operations on entire file systems; examples include VFS_MOUNT 
and VFS_UNMOUNT to mount or unmount a file system, respectively. File-system 
writers need to provide stubs for each of these sets of calls.

Supporting a new volume format requires implementing a new file-system type. 
However, it is not always necessary to implement a new file-system type in order 
to change the way in which a user interacts with files. VFS stacks allow developers 
to create and layer new capabilities onto an existing file-system type.

VFS stacks provide filters between the user and the underlying file system. As 
implied by Figure 7-1 (page 57), VFS stacks can run on top of any type of file system. 
If your application does not need to support a volume format or networking 
protocol, but does need to intercept data going into or out of the file system, 
implementing a VFS stack may be the appropriate choice.

For example, VFS stacks may be used in the following sorts of application areas:

� virus checking —automatically check a file for viruses before reading its data

� compression—perform compression or decompression on-the-fly when 
opening (reading) and writing files

� encryption—automatically encrypt a file as it is written, then decrypt it (with a 
password) when it is opened or read
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Figure 7-1 illustrates the file system architecture with several example VFS stacks 
and file systems shown.

Figure 7-1 File systems and VFS stacks

When writing a VFS stack, you must create a stub for each vnode operation. In some 
cases, the stub simply calls the routine of the same name in the underlying layer. 
Note that stacks may be implemented directly on top of a file system or on top of 
other stacks, so you cannot be sure exactly what the underlying layer will do with 
a given VFS or VOP call.

In other cases, such as when creating, reading, or writing a file, your VFS stack will 
intercept a call rather than simply passing it to the underlying layer. For example, 
an encryption stack would intercept read and write calls in order to add encryption 
or decryption filters. A virus-checking stack might intercept the open and read calls.

VFS stacks are KEXTs. The Kernel Extension Manager dynamically adds VFS stacks 
and support for additional file-system types to the running Mac OS X kernel as part 
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automatically or manually. Further file access goes through that file system’s calls.
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A Politically Correct Example

The Politically Correct File System is an example of a VFS stack. In this example, all 
calls are ignored (passed to the underlying layer) except for those that create, read, 
or write a file (or folder). 

Upon receiving a request to create a file or folder, the Politically Correct (PC) stack 
intercepts the call before it can be executed by the underlying file system. The PC 
version of the create call checks the requested filename against a table of names. If 
the name is deemed politically incorrect, for example if the user chooses to name a 
file “vulgarity”, the PC create call chooses a more pleasing name, for example, 
“politeness”. The new name is passed to the create routine of the underlying file 
system.

Similarly, when a user opens a file to read or write it, such as with a text editor, the 
PC read and write routines first examine the data buffer, possibly substituting 
preferred words and phrases for their undesirable counterparts. After the 
substitutions are made, the buffer is handed to the underlying routine, which 
displays the data or writes it to disk. 

Thus, if a user attempted to save a file containing a sentence such as this:

The beleaguered computer company’s woes continue, despite rising stock prices.

the PC write routine might intercept and filter this sentence to a more desirable 
version:

The aspiring computer company’s joys continue, due to rising stock prices.



59

C H A P T E R  8  

8 Extending the Kernel

As discussed in the chapter “Kernel Architecture” (page 13), Mac OS X provides a 
kernel extension mechanism as a means of allowing dynamic loading of code into 
the kernel, without the need to recompile or relink. Because these kernel extensions 
(KEXTs) provide both modularity and dynamic loadability, they are a natural 
choice for any relatively self-contained service that requires access to internal kernel 
interfaces. 

Because KEXTs run in supervisor mode in the kernel’s address space, they are also 
harder to write and debug than user-level modules, and must conform to strict 
guidelines. Further, kernel resources are wired (permanently resident in memory) 
and are thus more costly to use than resources in a user-space task of equivalent 
functionality.

In addition, although memory protection keeps applications from crashing the 
system, no such safeguards are in place inside the kernel. A badly behaved kernel 
extension in Mac OS X can actually cause more trouble than a badly behaved 
application or extension could in Mac OS 8 or 9.

Bugs in KEXTs can have far more severe consequences than bugs in user-level code. 
For example, a memory access error in a user application can, at worst, cause that 
application to crash. In contrast, a memory access error in a KEXT causes a system 
panic, crashing the operating system.

Finally, for security reasons, some customers restrict or don’t permit the use of 
third-party KEXTs. As a result, use of KEXTs is strongly discouraged in situations 
where user-level solutions are feasible. Mac OS X guarantees that user threads are 
just as efficient as kernel threads, so efficiency should not be an issue. Unless your 
application requires low-level access to kernel interfaces or the data stream, you 
should use a higher level of abstraction when developing code for Mac OS X. 
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When you are trying to determine if a piece of code should be a KEXT, the default 
answer is generally no. In particular, if your code was a system extension in 
Mac OS 8 or 9, that does not imply that it must necessarily be a kernel extension in 
Mac OS X. There are only a few good reasons for a developer to write a kernel 
extension:

� Your code needs to take a primary interrupt, that is, something in the hardware 
needs to interrupt the CPU.

� The primary client of your code is inside the kernel, for example, a block device 
whose primary client is a file system.

� A sufficiently large number of running applications require a resource that your 
code provides; for example, you have written a file-system stack.

� Your code needs to multiplex between multiple client applications that require 
high speed, excellent synchronization, or low latency.

If your code does not meet any of the above criteria, you should consider 
developing it as a library or a user-level daemon, or using one of the user-level 
plug-in architectures (such as QuickTime components or the Core Graphics 
framework) instead of writing a kernel extension.

If you are writing device drivers or code to support a new volume format or 
networking protocol, however, KEXTs may be the only feasible solution. 
Fortunately, while KEXTs may be more difficult to write than user-space code, 
several tools and procedures are available to enhance the development and 
debugging process. See “Debugging Your KEXT” (page 63) for more information.

This chapter provides a conceptual overview of KEXTs and how to create them. If 
you are interested in building a simple KEXT, see the Apple tutorials listed in the 
Bibliography. These provide step-by-step instructions for creating a simple, generic 
KEXT or a basic I/O Kit driver.



C H A P T E R  8

Extending the Kernel

KEXT Implementation 61

KEXT Implementation

KEXTs are implemented as bundles, folders that the Finder treats as single files. See 
the chapter about bundles in Inside Mac OS X: System Overview for a discussion of 
bundles.The KEXT bundle can contain the following:

� Information property list — text file that describes the contents, settings, and 
requirements of the KEXT. This file is required. A KEXT bundle need contain 
nothing more than this file, although most KEXTs contain one or more kernel 
modules as well. See the chapter about software configuration in Inside 
Mac OS X: System Overview for further information about property lists.

� Kernel module— a file in Mach-O format, containing the actual binary code 
used by the KEXT. A kernel module (or KMOD) represents the minimum unit 
of code that can be loaded into the kernel. A KEXT usually contains one KMOD. 
If no KMODs are included, the information property list file must contain a 
reference to  a module in another KEXT and change its default settings. 

� Resources— for example, icons or localization dictionaries. Resources are 
optional; they may be useful for KEXTs that need to display a dialog or menu. 
At present, no resources are explicitly defined for use with KEXTs.

KMOD Dependencies

Any KMOD can declare that it is dependent upon any other KMOD. The developer 
lists these dependencies in the “Requires” field of the module’s property list file.

Before a KMOD is loaded, all of its requirements are checked. Those required 
modules (and their requirements) aree loaded first, iterating back through the lists 
until there are no more required modules to load. Only after all requirements are 
met, is the requested KMOD loaded as well. 
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For example, device drivers (a type of KEXT) are dependent upon (require) certain 
families (another type of KEXT). When a driver is loaded, its required families are 
also loaded to provide necessary, common functionality. To ensure that all 
requirements are met, each device driver should list all of its requirements (families 
and other drivers) in its property list. See the chapter “Device Drivers and the I/O 
Kit” (page 39), for an explanation of drivers and families. 

It is important to list all dependencies for each KMOD. If your KEXT fails to do so, 
your KMOD may not load due to unrecognized symbols, thus rendering the KEXT 
useless. Dependencies in KMODs can be considered analogous to required header 
files or libraries in code development; in fact, the Kernel Extension Manager uses 
the standard linker to resolve KMOD requirements.

Building and Testing Your KEXT

After creating the necessary property list and C (or C++) source files, you use 
Project Builder to build your KEXT as well. Any errors in the source code are 
brought to your attention during the build and you are given the chance to edit your 
source files and try again.

To test your KEXT, however, you need to leave Project Builder and work in the 
Terminal application (or in console mode). In console mode, all system messages 
are written directly to your screen, as well as to a log file (/var/log/system.log). If 
you work in the Terminal application, you must view system messages in the log 
file.You also need to log in to the root account (or use the su command), since only 
the root account can load kernel extensions. 

When testing your KEXT, you can load and unload it manually, as well as check the 
load status. You can use the kextload command to load any KEXT. This command 
handles matching for I/O Kit drivers, then calls kmodload. If you are not working 
with the I/O Kit you can run kmodload directly. Manual pages for these, as well as 
the kmodunload and kmodstat commands, are included in Mac OS X.

Note that these commands are only useful when developing a KEXT. Eventually, 
after it has been tested and debugged, you install your KEXT in one of the standard 
places (see “Installed KEXTs” (page 64) for details). Then, it will be loaded and 
unloaded automatically at system startup and shutdown or whenever it is needed 
(such as when a new device is detected).
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Debugging Your KEXT

KEXT debugging can be complicated. Before you can debug a KEXT, you must first 
enable kernel debugging, as Mac OS X is not normally configured to permit 
debugging the kernel. Only the root account can enable kernel debugging, and you 
need to reboot Mac OS X for the changes to take effect.

Kernel debugging is performed using two Mac OS X machines, called the 
development machine and target machine. These machines must be connected over 
a reliable network connection on the same subnet (or within a single local network). 
Specifically, there must not be any intervening IP routers or other devices that could 
make hardware-based Ethernet addressing impossible.

The KEXT is registered (and the KMODs loaded and run) on the target machine. 
The debugger is launched and run on the development machine. You can also 
rebuild your KEXT on the development machine, after you fix any errors you find.

Debugging must be performed in this fashion because you must temporarily halt 
the kernel on the target machine in order to use the debugger. When you halt the 
kernel, all other processes on that machine stop. However, a debugger running 
remotely can continue to run and can continue to examine (or modify) the kernel on 
the target machine.

Note that bugs in KEXTs may cause the target kernel to freeze or panic. If this 
happens, you may not be able to continue debugging, even over a remote 
connection; you have to reboot the target and start over, setting a breakpoint just 
before the code where the KEXT crashed and working very carefully up to the crash 
point.

KEXTs are debugged using GDB, a source-level debugger with a command-line 
interface. You will need to work in the Terminal application to run GDB. For 
detailed information about using GDB, see the documentation included with 
Mac OS X. You can also use the help command from within GDB.
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Because KEXT debugging happens at such a low level, you won’t be able to take 
advantage of all features of GDB. For example:

� You can’t use GDB to call a function or method in a KEXT.

� You can’t use GDB to debug interrupt routines.

Use care that you do not halt the kernel for too long when you are debugging (for 
example, when you set breakpoints). In a short time, internal inconsistencies can 
appear that cause the target kernel to panic or freeze, forcing you to reboot the target 
machine. 

Installed KEXTs

The Kernel Extension Manager (KEXT Manager) is responsible for loading and 
unloading all installed KMODs (commands such as kextload are used only during 
development). Installed KMODs are dynamically added to the running Mac OS X 
kernel as part of the kernel’s address space. An installed and enabled KMOD is 
invoked as needed.

Important
Note that KEXTs are only wrappers (bundles) around a 
property list, KMODs (or references to KMODs), and 
optional resources. The KEXT describes what is to be loaded; 
it is the KMODs that are actually loaded. 

KEXTs are usually installed in the Extensions folder (at 
/System/Libraries/Extensions.) The Kernel Extension Manager (in the form of a 
daemon, kextd), always checks here. KEXTs can also be installed in several other 
locations:

� in ROM

� in the Driver partition on a disk

� inside an application bundle
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The last location allows an application to register KEXTs without the need to install 
them permanently elsewhere within the system hierarchy. This may be more 
convenient and allows the KMOD to be associated with a specific, running 
application. When it starts, the application can call the Kernel Extension Manager 
and register a KEXT. 

For example, a network packet sniffer application might employ a Network Kernel 
Extension (NKE). A tape backup application would require that a tape driver be 
loaded during the duration of the backup process. When the application exits, the 
kernel extension is no longer needed and can be unloaded.

Note that, although the application is responsible for registering the KEXT, this is 
no guarantee that the corresponding KMODs are actually ever loaded. It is still up 
to a kernel component, such as the I/O Kit, to determine a need, such as matching 
a piece of hardware to a desired driver, and tell the KEXT Manager to load the 
appropriate KMODs (and their dependencies).
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In a typical preemptive multitasking operating system such as Mac OS X, FreeBSD, 
or Linux, user applications are not allowed direct access to shared resources such as 
RAM, disks, printers, and other devices. Instead, the kernel provides controlled 
access to these resources, and can thus be viewed as a service provider.

Recall that each application exists in its own (user) address space and that the kernel 
exists in a separate (kernel) address space. Privileged operations, such as opening a 
file, initiating network traffic, or shutting down the computer, are performed in 
kernel space and are thus available only to the kernel.

Applications that need to have privileged operations performed must request the 
appropriate services from the kernel. The kernel provides these operations as 
services to the processes, mapping any associated parameters in and out of user 
space.

Application processes include applications that are explicitly launched and run by 
the user, as well as various system processes, such as daemons, that keep the system 
running smoothly.

Any code to communicate between user space and kernel space must take 
advantage of one or more of the following facilities available in Mac OS X:

� BSD system calls

� Mach IPC

� shared memory

In Mac OS X, where the kernel itself is modular, interaction between the various 
kernel components is also in the form of services. Each component, such as Mach, 
networking, or the file system, is therefore both a provider of services to 
applications and other components as well as a client of kernel services itself. Kernel 
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space, however, is a single address space; memory is shared between kernel 
components. Thus, kernel components are able to communicate more freely with 
each other than with applications in user space.

Available Services

Most of the commonly-used kernel services are described below. For each service, 
the provider component is named as well as the client components. A brief 
description is also given. For more complete information, see the available 
documentation for the component itself.

In the API listings below, header files are listed as they would be included in real 
code. The default compiler flags should locate the correct file in the “well known 
places”.

In addition, the following header files are assumed to be included at all times:

#include <sys/param.h>      /* useful defines and limits */
#include <sys/types.h>      /* exported data types */
#include <sys/systm.h>      /* "systm" and NOT "system"; prototypes */
#include <libkern/libkern.h>    /* more prototypes */

BSD Media Shim
Provider: I/O Kit
Clients: BSD, File systems

The BSD media shim uses BSD system calls and the I/O Kit user client facility to 
export device driver interfaces into user space as BSD-style device nodes in the /dev 
directory. The BSD media shim also communicates with the file system and VFS 
stacks. Support for user processes is provided via devfs.
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Device Driver Management
Provider: I/O Kit
Clients: I/O Kit KEXTs (families and drivers), user processes
APIs:

IOKit/IOfamily/*

These services support device driver instantiation, matching, service notification. 
Family APIs publish services; drivers use devices.

Events
Provider: Mach
Clients: All kernel components, user processes

Specific services include port notifications, notification ports, and notification 
events.

Exceptions, Traps
Provider: Mach
Clients: BSD, user processes

This service supports BSD signals, interrupts, and debugging, as well as various 
system calls that can be accessed by user processes.

Families
Provider: I/O Kit
Clients: BSD, file systems, networking, user processes
APIs: 

IOKit/IOfamily/*

This service provides APIs for I/O Kit families, including support for networking, 
block, graphics, FireWire, USB, human interface, and many other device categories.
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File Descriptor Management
Provider: BSD
Clients: file systems, networking, user processes
APIs: 

#include <sys/filedesc.h>
#include <sys/file.h>

File descriptors provide per-process unique, nonnegative integers that are used to 
identify an open file (or socket). For user processes, all interaction with files is done 
via file descriptors. File descriptors are also used for access and manipulation of 
POSIX semaphores and POSIX shared memory.

Host Manipulation and Inquiry
Provider: Mach
Clients: All kernel components

These services are used to get and set host-based information, such as page size and 
processor count.

Interprocess Communication (IPC)
Provider: Mach
Clients: All kernel components

This service provides various specialized forms of communication between tasks 
(processes) on the local machine. The particular form of IPC in use dictates how 
(and whether) data is processed. Specific services include: send and receive 
operations, as well as primitives for servicing ports and/or port sets. See also: “Port 
Right Management” (page 72), “Task and Thread Management” (page 75), 
“Memory and Address Space Management” (page 72), and “Synchronization 
Primitives (Low Level)” (page 74).

Kernel Loadable Module Support
Provider: I/O Kit
Clients: file systems, networking, loadable modules
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Tools: See the man pages for the following utility programs:
kextload
kextunload
kmodload
kmodstat
kmodunload

This service provides support for loading and unloading KEXTs.

Kernel Tracing
Provider: BSD
Clients:  Mach, I/O Kit, file systems, networking, loadable modules
APIs: 

#include <sys/kdebug.h>

This service provides information for performance analysis and debugging 
support, as well as trace points for user processes.

Lock Management
Provider: BSD
Clients: file systems, networking, loadable modules, user processes
APIs: 

#include <sys/lock.h>

BSD, file systems, and networking code should use this service for management of 
locking operations. Note that this API is quite different from the one defined in 
osfmk/kern/lock.h.

Mach Interface Generator (MIG)
Provider: Mach
Clients: All kernel components, user processes (Project Builder)
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MIG is used to specify IPC formats that are valid on a given port. It is used mostly 
in Remote Procedure Call (RPC) situations, but supports other forms of 
communication as well. MIG also provides a set of runtime services for dispatching 
incoming communications to the appropriate handler. Project Builder has special 
rules and targets for generating stubs for both sides of the MIG interface.

mbuf Management
Provider: Networking
Clients: NKEs (third-party), file systems
APIs: 

#include <sys/mbuf.h>

These services provide support for the mbuf data structure, which is used to manage 
I/O for network devices. 

Memory and Address Space Management
Provider: Mach
Clients: All kernel components, user processes

Specific services include virtual memory management, address space allocation, 
page read and write, external memory managers (EMMI), and memory objects.

Port Right Management
Provider: Mach
Clients: All kernel components

Port right ownership is the fundamental security mechanism within Mach. Specific 
services include creation and destruction, reference management, copying, explicit 
insertion and removal from other tasks, passing via IPC, grouping of rights into 
sets, and requesting asynchronous notifications about changes in a port’s status. See 
also: “Task and Thread Management” (page 75), “Interprocess Communication 
(IPC)” (page 70).
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Processor Management
Provider: Mach
Clients: All kernel components

These services provide low-level hardware support, including processor start, 
processor stop, and power management.

Registry
Provider: I/O Kit
Clients: I/O Kit family APIs, user processes.
APIs: 

#include <IOKit/IORegistryEntry.h>

These services support publishing of I/O Kit devices or services and device 
information and relationships.

Queue Management
Provider: BSD
Clients: file systems, networking, loadable modules, user processes
APIs: 

#include <sys/queue.h>

BSD, file systems, and networking code use this service for queue management. It 
provides support for singly and doubly linked lists and queues. Note that there are 
subtle differences between this API and the queues found in osfmk/kern/queue.h.

Socket Management
Provider: Networking
Clients: NKEs (third-party), file systems, user processes
APIs: 

#include <sys/socket.h>
#include <sys/socketvar.h>

These services provide support for the management of sockets.
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Network Kernel Extension Support
Provider: Networking
Clients: NKEs (third-party)
APIs: 

#include <net/kext_net.h>

These services provide general support for network kernel extensions.

Scheduling
Provider: Mach
Clients: BSD

Specific services include priority-based thread scheduling, preemption, and 
processor resource allocation, based on the following policies: time-sharing, 
round-robin, and FIFO fixed priority.

Synchronization Primitives (Low Level)
Provider: Mach
Clients:  All kernel components, IPC services for exporting to user space.

This Mach service provides low-level implementation support for basic 
asynchronous primitives (wait queues, semaphores) as well as basic locking 
primitives (machine-specific locks, spin locks, mutexes, shared/exclusive 
read/write locks).

Synchronization Primitives 
Provider: BSD
Clients: File systems, Networking, loadable modules, user processes
APIs: 

#include <sys/proc.h>
#include <machine/spl.h>

This BSD service provides higher level support for sleep() and wakeup() calls as 
well as SPLs.
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sysctl
Provider: BSD
Clients: File systems, networking, loadable modules
APIs: 

#include <sys/sysctl.h>

This service provides a formalized interface for kernel global manipulation and 
tuning.

Task and Thread Management
Provider: Mach
Clients: BSD

This service provides the underlying implementation for BSD process management; 
a process is based on one Mach task and one or more Mach threads. A task is the 
unit of resource ownership. A thread is an independently schedulable execution 
path. 

Timing Services
Provider: Mach
Clients: BSD, user processes

The kernel provides several different timing services to user processes. Timing 
services support profiling, statistics gathering, and various types of timers, as well 
as current date and time-of-day functionality.

VFS Infrastructure
Provider: BSD
Clients: file system
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APIs: 
#include <sys/buf.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/vnode_if.h>
#include <vfs/vfs_support.h>

This service provides VFS management routines and default library routines in 
support of virtual file system functionality.

Vnode Management
Provider: BSD
Clients: file system
APIs: 

#include <sys/vnode.h>

This service provides allocation, referencing, and serialization functionality in 
support of vnode management.

Zone allocator
Provider: Mach
Clients: BSD, networking

This service provides support for efficient kernel memory allocation.
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10 Glossary

abstraction The process of picking out 
(abstracting) common features of objects and 
procedures. In programming, an abstraction 
provides the API that all instances of a thing 
conform to; the abstraction defines shared 
features. In the I/O Kit, abstractions take the 
form of classes.

address space The address space of a 
process describes the ranges of memory 
(both physical and virtual) that it uses while 
running. In Mac OS X, processes do not share 
address space.

anonymous memory Virtual memory 
backed by the default pager to swap files, 
rather than by a persistent object. 
Anonymous memory is zero-initialized and 
exists only for the life of the task. See also 
default pager, task

API (Application programming 
interface) The interface (calling 
conventions) by which an application 
program accesses operating system services.

Apple Public Source License Apple’s 
Open Source license, available at 
http://www.apple.com/publicsource. Darwin 
is distributed under this license. See also 
Open Source

AppleTalk A suite of network protocols 
that is standard on Macintosh computers.

ASCII (American Standard Code for 
Information Interchange) A 7-bit character 
set (commonly represented using 8 bits) that 
defines 128 unique character codes. See also 
Unicode

BSD (Berkeley Software 
Distribution. Formerly known as the 
Berkeley version of UNIX, BSD is now 
simply called the BSD operating system. The 
BSD portion of the Mac OS X kernel is based 
on FreeBSD, a version of BSD.

BSD media shim Specifically 
IOMediaBSDClient; part of the I/O Kit storage 
family. The BSD media shim provides access 
to all storage devices being managed by I/O 
Kit drivers via traditional BSD device nodes.

bundle A packaging mechanism 
(implemented as a directory) that stores 
executable code and the software resources 
related to that code. Applications, plug-ins, 
and frameworks represent types of bundles. 
Except for frameworks, bundles are file 
packages, presented by the Finder as a single 
file.

Carbon An application environment in 
Mac OS X that features a set of programming 
interfaces derived from earlier versions of the 
Mac OS. The Carbon APIs have been 
modified to work properly with Mac OS X, 
especially with the foundation of the 
operating system, the kernel environment. 
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Carbon applications can run on Mac OS X, 
Mac OS 9, and all versions of Mac OS 8 later 
than Mac OS 8.1.

Classic An application environment in Mac 
OS X that lets users run non-Carbon legacy 
Mac OS software. It supports programs built 
for both Power PC and 68K processor 
architectures and is fully integrated with the 
Finder and the other application 
environments.

clock An object used to abstract time in 
Mach.

Cocoa An advanced object-oriented 
development platform on Mac OS X. Cocoa is 
a set of frameworks with programming 
interfaces in both Java and Objective-C. It is 
based on the integration of OPENSTEP, 
Apple technologies, and Java. 

condition variable A type of variable 
provided by the POSIX threads functions to 
help synchronize the threads in a task.

console A special window that displays 
system log messages, as well as output 
written to the standard error and standard 
output streams by applications launched 
from the Finder. Also, an application by the 
same name that displays this information.

control port In Mach, access to the control 
port allows an object to be manipulated. Also 
called the privileged port. See also port; 
name port

cooperative multitasking A multitasking 
environment in which a running program 
can receive processing time only if other 
programs allow it; each application must 

give up control of the processor 
cooperatively in order to allow others to run. 
Mac OS 8 and 9 are cooperative multitasking 
environments. See also preemptive 
multitasking

copy-on-write A delayed copy 
optimization used in Mach. The object to be 
copied is write protected instead, and 
physically copied only if some thread tries to 
write to it. See also thread.

Darwin  An Open Source project that 
includes the Darwin kernel, the BSD 
commands and C libraries, and several 
additional features.The Darwin kernel is 
synonymous with the Mac OS X kernel. 

daemon A long-lived process, usually 
without a visible user interface, that performs 
a system-related service. Daemons are 
usually spawned automatically by the 
system and may either live forever or be 
regenerated at intervals. 

default pager In Mach, one of two built-in 
pagers. The default pager handles 
nonpersistent (anonymous) memory. See 
also anonymous memory; vnode pager; 
pager

demand paging An operating-system 
facility that brings pages of data from disk 
into physical memory only as they are 
needed.

DLIL (Data Link Interface Layer) The part 
of the Mac OS X kernel’s networking 
infrastructure that provides the interface 
between protocol handling and network 
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device drivers in the I/O Kit. A 
generalization of the BSD “ifnet” 
architecture.

DMA Direct memory access; a means of 
transferring data between host memory and 
a peripheral device without involving the 
host processor.

 driver Software that deals with getting 
data to and from a device, as well as control 
of that device. In the I/O Kit, an object that 
manages a piece of hardware (a device), 
implementing the appropriate I/O Kit 
abstractions for that device. See also object

DVD (Digital Versatile Disc)  Originally, 
Digital Video Disc. An optical storage 
medium that provides greater capacity and 
bandwidth than CD-ROM; DVDs are 
frequently used for multimedia as well as 
data storage.

dyld (Dynamic link editor) A utility that 
allows programs to dynamically load (and 
link to) needed functions.

EMMI (External Memory Management 
Interface) Mach’s interface to memory 
objects that allows their contents to be 
contributed by user-mode tasks. See also 
external pager

Ethernet A high-speed local area network 
technology. 

exception An interruption to the normal 
flow of program control, caused by the 
program itself or by executing an illegal 
instruction.

exception port A Mach port on which a 
task or thread receives messages when 
exceptions occur.

external pager A module that manages the 
relationship between virtual memory and its 
backing store. External pagers are clients of 
Mach’s EMMI. They may be either in the 
kernel or in user space. The built-in pagers in 
Mac OS X are the default pager and the 
vnode pager. See also EMMI

family In the I/O Kit, a family defines a 
collection of software abstractions that are 
common to all devices of a particular 
category (for example, PCI, storage, USB). 
Families provide functionality and services 
to drivers. See also driver

FAT (File Allocation Table) A data 
structure used in the MS-DOS file system. 
Also synonymous with the file system that 
uses it. The FAT file system is also used as 
part of Microsoft Windows and has been 
adopted for use inside devices such as digital 
cameras. 

fat files Mach-O files containing object 
code for more than one machine architecture.

FIFO (First-in First-out) A data processing 
scheme in which data is read in the order in 
which it was written, processes are run in the 
order in which they were scheduled, and so 
forth.

file descriptor A per-process unique, 
nonnegative integer used to identify an open 
file (or socket).
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firewall Software (or a computer running 
such software) that prevents unauthorized 
access to a network by users outside of the 
network.

fixed-priority policy In Mach, a scheduling 
policy in which threads execute for a certain 
quantum of time, and then are put at the end 
of the queue of threads of equal priority.

fork A stream of data that can be opened 
and accessed individually under a common 
filename. The Macintosh Standard and 
Extended file systems store a separate “data” 
fork and a “resource” fork as part of every 
file; data in each fork can be accessed and 
manipulated independently of the other. 
Also, in BSD, fork is a system call that creates 
a new process.

framework A basic structure that holds the 
parts of some thing together. In Mac OS X, 
specifically, a bundle containing a dynamic 
shared library and associated resources, 
including image files, header files, and 
documentation. Also used to describe the 
barrier between user and system functions.

FreeBSD A variant of the BSD operating 
system. See http://www.freebsd.org for 
details.

GDB (GNU Debugger) GDB is a powerful, 
source-level debugger with a command line 
interface. GDB is a popular Open Source 
debugger and is included with the Mac OS X 
developer tools.

host The computer that’s running (is host 
to) a particular program. The term is usually 
used to refer to a computer on a network.

host processor The microprocessor on 
which an application program resides. When 
an application is running, the host processor 
may call other, peripheral microprocessors, 
such as a digital signal processor, to perform 
specialized operations.

HFS (Hierarchical file system ) The Mac 
OS Standard filesystem format, used to 
represent a collection of files as a hierarchy of 
directories (folders), each of which may 
contain either files or folders themselves.

HFS+ (Hierarchical file system plus) The 
Mac OS Extended file system format. This 
filesystem format was introduced as part of 
Mac OS 8.1, adding support for filenames 
longer than 31 characters, Unicode 
representation of file and directory names, 
and efficient operation on very large disks.

IDE (Interactive development environment 
or integrated development 
environment) An application or set of tools 
that allows a programmer to write, compile, 
edit, and perhaps test and debug within an 
integrated, interactive environment.

inheritance attribute In Mach, a value 
indicating the degree to which a parent 
process and its child process share the parent 
process’s address space. A memory page can 
be inherited copy-on-write, shared, or not at 
all.

in-line data Data that’s included directly in 
a Mach message, as opposed to referred to by 
a pointer. See also out-of-line data



G L O S S A R Y  

81

I/O (Input/Output) The sending and 
retrieving of information into the memory of 
a program, usually to and from a file or a 
peripheral device.

I/O Kit Apple’s object-oriented I/O 
development model. The I/O Kit provides a 
framework for simplified driver 
development, supporting many families of 
devices. See also family.

Info Plist See Information property list

information property list A special form of 
property list with predefined keys for 
specifying basic bundle attributes and 
information of interest, such as supported 
document types and offered services. See 
also bundle; property list

IPC (Inter-process communication) The 
transfer of information between processes. 

Kerberos An authentication system based 
on symmetric key cryptography. Used in 
MIT Project Athena and adopted by the Open 
Software Foundation (OSF).

kernel The complete Mac OS X core 
operating system environment that includes 
Mach, BSD, the I/O Kit, file systems, and 
networking components.

kernel extension See KEXT

kernel port A Mach port whose receive 
right is held by the kernel. See also task port; 
thread port

KEXT (kernel extension) Kernel 
extensions extend the functionality of the 
kernel. The I/O Kit, File system, and 

Networking components are designed to 
allow and expect the creation and use of 
KEXTs. 

KMOD (kernel module) A file (or files) in 
Mach-O format, containing the actual binary 
code used by a KEXT. A KMOD is the 
minimum unit of code that can be loaded into 
the kernel. See also KEXT, Mach-O.

Mach The lowest level of the Mac OS X 
kernel. Mach provides such basic services 
and abstractions as threads, tasks, ports, IPC, 
scheduling, physical and virtual address 
space management, VM, and timers.

Mach-O Mach object file format. The 
preferred object file format for Mac OS X.

Mach factor A measurement of how busy a 
Mach-based system (such as Mac OS X) is. 
Unlike a load average (as used in Linux or 
BSD systems), higher Mach factors mean the 
system is less busy. 

Mach server A task that provides services 
to clients, using a MIG-generated RPC 
interface. See also MIG

main thread By default, a process has one 
thread, the main thread. If a process has 
multiple threads, the main thread is the first 
thread in the process. A user process can use 
the POSIX thread API to create other user 
threads.

makefile A makefile details the files, 
dependencies, and rules by which an 
executable application is built or by which a 
set of programs may be run.
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memory-mapped files A facility that maps 
virtual memory onto a physical file. 
Thereafter, any access to that part of virtual 
memory causes the corresponding page of 
the physical file to be accessed. The contents 
of the file can be changed by changing the 
contents in memory.

memory object An object managed by a 
pager, that represents a file (for example) in 
memory. See also pager

memory protection A system of memory 
management in which programs are 
prevented from being able to modify or 
corrupt the memory partition of another 
program. Mac OS 8 and 9 do not have 
memory protection; Mac OS X does.

message In Mach, a message consists of a 
header and a variable-length body; some 
operating-system services are invoked by 
passing a message from a thread to the Mach 
port representing the task that provides the 
desired service.

microkernel A kernel implementing a 
minimal set of abstractions. Typically, 
higher-level OS services such as file systems 
and device drivers are implemented in layers 
above a microkernel, possibly in trusted 
user-mode servers. See also monolithic 
kernel

MIG (Message interface generator) ) MIG 
provides a procedure call interface to Mach’s 
system of interprocess messaging.

monolithic kernel A kernel architecture in 
which all pieces of the kernel are closely 
intertwined. A monolithic kernel provides 
substantial performance improvements; 

however, it is difficult to evolve the 
individual components independently. The 
Mac OS X kernel is a hybrid of the monolithic 
and microkernel models. See also 
microkernel

multicast A process in which a single 
packet can be addressed to multiple 
recipients. Multicast is used, for example, in 
streaming video, in which many megabytes 
of data are sent over the network.

multihoming The ability to have multiple 
network addresses in one computer. For 
example, multihoming might be used to 
create a system in which one address is used 
to talk to hosts outside a firewall and the 
other to talk to hosts inside; the computer 
provides facilities for passing information 
between the two.

multitasking Describes an operating 
system that allows the concurrent execution 
of multiple programs. Mac OS X uses 
preemptive multitasking. Mac OS 8 and 9 use 
cooperative multitasking.

mutex (Mutual exclusion variable) A type 
of variable provided by the POSIX threads 
functions to help protect critical regions in a 
multiple-thread task.

name port In Mach, access to the name port 
names the object. See also port; control port

name space An agreed-upon context in 
which names (identifiers) can be defined. 
Within a given name space, all names must 
be unique.
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named memory entry A handle (a port) to 
a mapable object backed by a memory 
manager. The object can be a region or a 
memory object.

named region In Mach, a form of named 
memory entry that provides a form of 
memory sharing.

NAT (Network address translation) A 
scheme that transforms network packets at a 
gateway so network addresses that are valid 
on one side of the gateway are translated into 
addresses that are valid on the other side.

network A group of hosts that can directly 
communicate with each other.

NFS (Network file system) An NFS file 
server allows users on the network to share 
files as if the files were on the user’s local 
disk.

NKE (Network kernel extension) NKEs 
provide a way to extend and modify the 
networking infrastructure of Mac OS X 
dynamically, without recompiling or 
relinking the kernel. The effect is immediate 
and does not require rebooting the system.

NMI (Nonmaskable interrupt) An 
interrupt produced by a particular keyboard 
sequence or button. It can be used to 
interrupt a hung system. 

notify port A Mach port on which a task 
receives messages from the kernel advising it 
of changes in port access rights and of the 
status of messages it has sent.

nonsimple message In Mach, a message 
that contains either a reference to a port or a 
pointer to data. See also simple message.

nub An I/O Kit object that represents a 
device or logical service. Each nub provides 
access to the device or service it represents, 
and provides such services as matching, 
arbitration, and power management. It is 
most common that a driver publishes one 
nub for each individual device or service it 
controls; it is possible for a driver that vends 
only a single device or service to act as its 
own nub.

NVRAM (Nonvolatile RAM) RAM 
storage that retains its state even when the 
power is off. See also RAM

object In object-oriented programming, an 
instance of a class.

OHCI (Open Host Controller 
Interface) The register-level standard that 
is used by most USB controller chips.

Open Transport A communications 
architecture for implementing network 
protocols and other communication features 
on computers running Mac OS. Open 
Transport provides a set of programming 
interfaces that supports, among other things, 
both the AppleTalk and TCP/IP protocols.

Open Source A definition of software that 
includes freely available access to source 
code, redistribution, modification, and 
derived works. The full definition is available 
at http://www.opensource.org.
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out-of-line data Data that’s passed by 
reference in a Mach message, as opposed to 
being included in the message. See also 
in-line data.

packet An individual piece of information 
sent on a network.

page The unit of measurement used to 
divide memory.

pager A module responsible for providing 
the data for the pages of a memory object. See 
also default pager, vnode pager.

panic An unrecoverable system failure 
detected by the kernel.

physical address An address to which a 
hardware device, such as a memory chip, can 
directly respond. Programs, including the 
Mach kernel, use virtual addresses that are 
translated to physical addresses by mapping 
hardware controlled by the Mach kernel. 

PEF (Preferred Executable Format)  The 
format of executable files used for 
applications and shared libraries in Mac OS 8 
and 9; supported in Mac OS X. See also 
Mach-O (the preferred format for Mac OS X).

POSIX (Portable Operating System 
Interface) An operating system interface 
standardization effort supported by 
ISO/IEC, IEEE, and The Open Group.

port In Mach, a secure unidirectional 
channel for communication between tasks 
running on a single system. In IP transport 
protocols, an integer identifier used to select 
a receiver for an incoming packet, or to 
specify the sender of an outgoing packet.

port name In Mach, an integer index into a 
port name space; a port right is specified by 
its port name. See also port rights.

port rights In Mach, the ability to send to or 
receive from a Mach port. Also known as 
port access rights.

port set In Mach, a set of zero or more Mach 
ports. A thread can receive messages sent to 
any of the ports contained in a port set by 
specifying the port set as a parameter to 
msg_receive().

preemptive multitasking A type of 
multitasking in which the operating system 
can interrupt a currently running task in 
order to run another task, as needed. See also 
cooperative multitasking.

preemption The act of interrupting a 
currently running program in order to give 
time to another task.

priority In Mach scheduling, a number 
between 0 and 127 that indicates how likely a 
thread is to run. The higher the thread’s 
priority, the more likely the thread is to run. 
See also scheduling policy.

process A BSD abstraction for a running 
program. A process’ resources include a 
virtual address space, threads, and file 
descriptors. In Mac OS X, a process is based 
on one Mach task and one or more Mach 
threads.

process identifier, or process ID A number 
that uniquely identifies a process.

protected memory See memory protection. 
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protocol handler A network module that 
extracts data from input packets (giving the 
data to interested programs) and inserts data 
into output packets (giving the output packet 
to the appropriate network device driver).

programmed I/O I/O in which the CPU 
accomplishes data transfer with explicit load 
and store instructions to device registers, as 
opposed to DMA. Byte-by-byte or 
word-by-word data transfer to a device. Also 
known as direct I/O. See also DMA.

property list A textual way to represent 
data. Elements of the property list represent 
data of certain types, such as arrays, 
dictionaries, and strings. System routines 
allow programs to read property lists into 
memory and convert the textual data 
representation into “real” data. See also 
information property list.

Pthreads POSIX threads implementation. 
See also POSIX, threads

quantum The fixed amount of time a 
thread or process can run before being 
preempted.

RAM (Random-access memory) Memory 
that a microprocessor can either read or write 
to.

real-time Used to describe a system that 
must guarantee a response to an external 
event within a given time. Real-time support 
is important for applications such as 
multimedia. 

receive rights In Mach, the ability to 
receive messages on a Mach port. Only one 
task at a time can have receive rights for any 
one port. See also send rights.

reply port A Mach port associated with a 
thread that is used in remote procedure calls.

ROM (Read-only memory) , that is, 
memory that cannot be written to.

root An administrative account with 
special privileges. For example, only the root 
account can load kernel extensions. Also, the 
root file system (the root of the file system 
inverted tree).

RPC (Remote Procedure Call) In Mach, 
RPCs are implemented using MIG-generated 
messages.

SCSI Small Computer Systems Interface. A 
standard connector and communications 
protocol used for connecting devices such as 
disk drives to computers.

scheduling The determination of when 
each process or task runs, including 
assignment of start times.

scheduling policy In Mach, a thread’s 
scheduling policy determines how the 
thread’s priority is set and under what 
circumstances the thread runs. See also 
priority.

send rights In Mach, the ability to send 
messages to a Mach port. Many tasks can 
have send rights for the same port. See also 
receive rights
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simple message In Mach, a message that 
contains neither references to ports nor 
pointers to data. See also nonsimple 
message.

SMP (Symmetric Multi-processing) An 
operating system architecture in which two 
or more processors are managed by one 
kernel, sharing the same memory, having 
equal access to I/O devices, and in which any 
task, including kernel tasks, can run on any 
processor.

SPL Set Priority Level. A request that sets 
the current processor priority level, the level 
used by the kernel to control interrupt 
delivery to the CPU.

socket In BSD-derived systems, a socket 
refers to different entities in user and kernel 
space. For a user process, a socket is a file 
descriptor that has been allocated using 
socket(2). In the kernel, a socket is the data 
structure allocated when the kernel’s 
implementation of the socket(2) call is made. 
In AppleTalk protocols, a socket serves the 
same purpose as a port in IP transport 
protocols.

stackable file system A filesystem layer 
that has as its input the standard VFS file 
system interfaces and that may call other 
filesystem layers beneath it to implement fil 
esystem operations. All stackable file systems 
support the same interface and can be 
layered on top of one another to add unique 
functionality. 

task A Mach abstraction, consisting of a 
virtual address space and a port name space. 
A task itself performs no computation; 
rather, it is the framework in which threads 
run. See also threads

task port A kernel port that represents a 
task and is used to manipulate that task. See 
also kernel port, thread port.

TCP/IP Transmission Control 
Protocol/Internet Protocol. An industry 
standard protocol used to deliver messages 
between computers over the network. 
TCP/IP is the primary networking protocol 
used in Mac OS X.

thread In Mach, the unit of CPU utilization. 
A thread consists of a program counter, a set 
of registers, and a stack pointer. See also task.

thread port A kernel port that represents a 
thread and is used to manipulate that thread. 
See also kernel port, task port.

thread-safe Used to describe code that can 
be executed safely by several threads 
simultaneously.

time-sharing policy In Mach, a scheduling 
policy in which a thread’s priority is raised 
and lowered to balance its resource 
consumption against other timesharing 
threads

UFS (UNIX File system) An industry 
standard filesystem format used in UNIXand 
similar operating systems such as BSD. UFS 
in Mac OS X is a derivative 4.4BSD UFS. 
Specifically, its disk layout is not compatible 
with other BSD UFS implementations.
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UDF (Universal Disk Format. ) The file 
system format used in DVD disks.

Unicode A 16-bit character set that defines 
unique character codes for characters in a 
wide range of languages. Unlike ASCII, 
which defines 128 distinct characters 
typically represented in 8 bits, there are as 
many as 65,536 distinct Unicode characters 
that represent the unique characters used in 
most foreign languages.

USB Universal Serial Bus. A multiplatform 
bus standard that can support up to 127 
peripheral devices, including printers, digital 
cameras, keyboards and mice, and storage 
devices.

user client In I/O Kit, a means of allowing 
user-level code to communicate across the 
user-kernel address space boundary, as, for 
example, in a printer or scanner application. 

UTF-8 (Unicode Transformation 
Format 8) A format used to represent a 
sequence of 16-bit Unicode characters with 
an equivalent sequence of 8-bit characters, 
none of which are zero. This sequence of 
characters can be represented using an 
ordinary C language string.

virtual address An address that is usable 
by software. Each task has its own range of 
virtual addresses, beginning at address zero. 
The Mach operating system makes the CPU 
hardware map these addresses onto physical 
memory only when necessary, using disk 
memory at other times. See also physical 
address.

virtual memory The use of a disk partition 
or a file on disk to provide the same facilities 
usually provided by RAM. The virtual 
memory provides 32 bit (minimum) 
protected address space for each task and 
facilitates efficient sharing of that address 
space.

VFS Virtual File System. A set of standard 
internal file system interfaces and utilities 
that facilitate support for additional file 
systems. VFS provides an infrastructure for 
file systems built in the kernel.

VM See virtual memory. 

vnode A data structure containing 
information about a file.

vnode pager In Mach, one of two built-in 
pagers. The vnode pager maps files into 
memory objects. See also default pager; 
pager

work loop The main loop of an application 
or module that waits repeatedly for incoming 
events and dispatches them.

XML (Extensible Markup Language. ) An 
“extremely simple” dialect of SGML 
(Standard Generalized Markup Language), 
XML provides a metalanguage containing 
rules for constructing specialized markup 
languages. XML users can create their own 
tags, making XML very flexible.
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